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F. Böhm. Tiefenschätzung mit omnidirektionalem Kamerasystem. Master’s thesis, TU Munich,
Institute for Real-Time Computer Systems, apr. 2008.

D. Carton. Fahrzeugtracking und Gefahreneinschätzung unter Verwendung eines omnidirek-
tionalen Kamerasystems. Studienarbeit, TU Munich, Institute for Real-Time Computer Sys-
tems, oct. 2008.

L. Hong. Vollautomatische Detektion von Schachbrettmustern zur Kalibrierung omnidirek-
tionaler Kamerasysteme. Bachelor’s thesis, TU Munich, Institute for Real-Time Computer
Systems, oct. 2008.

M.S. Trigui. Person Height Measurement with Unknown Camera Orientation to the Ground.
Master’s thesis, TU Munich, Institute for Real-Time Computer Systems, apr. 2009.

J. Huang. Weiterentwicklung und Verbesserung einer automatischen Kalibration für omnidi-
rektionale Kameras. Master’s thesis, TU Munich, Institute for Real-Time Computer Systems,
sep. 2009.

x



List of Symbols

BG Background
CPU Central Processing Unit
DP Dynamic Programming
FG Foreground
FOV Field of View
FPGA Field Programmable Gate Array
FR Frame
HMM Hidden Markov Model
IC Illumination Changes
MAX Maximum
MIN Minimum
NCC Normalized Cross Correlation
NoW Number of Search Windows
OCAM Omnidirectional Camera
ODVS Omnidirectional Vision System
RCS Lehrstuhl für Realzeit–Computersysteme
RTP Real–Time Processor
SAD Sum of Absolute Differences
SGM Semi-Global Matching
SM Similarity Matrix
SPOV Single Point of View
SQP Sequential Quadratic Programming
SSD Sum of Squared Differences
SVD Singular Value Decomposition
VGA Video Graphics Array
ZNCC Zero–Mean Normalized Cross Correlation
ZSAD Zero–Mean Sum of Absolute Differences
ZSSD Zero–Mean Sum of Squared Differences

xi



List of Symbols

xii



Abstract

Nowadays, omnidirectional cameras are becoming more and more attractive for industrial ap-
plications. Since omnidirectional cameras have a large field of view, there is a great potential for
novel applications in the automotive domain such as advanced driver assistance systems among
others.

This thesis presents a novel information system for a smart door. The smart car door consists of
an actuated two-hinge kinematic along with a haptic support system which allows for situation-
dependent door opening to provide optimal space for ingress/egress in tight parking lots. The
information system is based on an omnidirectional camera which is integrated with the side-
view mirror to monitor the ambiance next to the car in its entirety. The information system
generates 3D ambiance information from the surroundings to compute situation-dependent door
opening paths in order to avoid collisions with obstacles. The information system also extracts
approaching drivers and estimates their body heights to automatically pre-adjust the seat for a
better ingress.

This thesis focuses on the development of robust image processing algorithms for absolute body
height estimation and on the generation of 3D ambiance information with a single omnidirec-
tional camera. First, the field of omnidirectional cameras is introduced with particular focus
on camera calibration and image rectification. The thesis presents the physical and mathemati-
cal properties of omnidirectional cameras and describes the underlying camera model to obtain
perspective panoramic images. A calibration scheme is presented that estimates the parameters
of the camera model using chessboard corners in calibration patterns. An extension to the cali-
bration scheme is proposed that overcomes the previous manual selection of corners in existing
calibration procedures. Instead, a robust extraction algorithm is presented that is able to detect
chessboard corners in calibration images captured under different illumination conditions.

Different projections – such as the spherical or cylindrical projection – are presented to trans-
form original images into panoramic images. Additionally, a new measure – the pixel density –
is proposed as a new tool to compare omnidirectional cameras and projections in terms of best
utilization of sensor pixels in panoramic images. This way, optimal utilization of sensor pixels
and, hence, optimal resolution in panoramic images can be obtained for any omnidirectional
camera. It is also shown that the commonly used cylindrical projection is not suitable for some
omnidirectional cameras.

Next, the problem of absolute body height estimation of humans using a single omnidirectional
camera is analyzed. A novel algorithm is proposed which estimates the absolute body height
of approaching drivers in order to adjust the seat position for a better ingress in narrow parking
situations. Body height estimation is realized as a two stage process: Driver extraction using a

xiii



Abstract

Kalman-based background model and body height determination using a model-based function.
The thesis describes a Kalman-based background model that has been extended by statistical
functions to increase its robustness against shadows and illumination changes. Additionally,
an initialization scheme is presented allowing for background initialization in scenarios with
high volume of traffic. The key feature for enabling absolute body height estimation with a
single camera is a known position and orientation of the camera relative to the ground. This
position and orientation varies for each parking scenario and must, hence, automatically be
determined from image data only. For this reason, a new model-based camera-ground function
is introduced that estimates the orientation and the position of the camera relative to the ground.
This estimation is based on image data obtained from approaching drivers only. The function
explicitly considers camera tilt caused by inclined parked cars and has a global minimum when
the estimated camera position best matches the real camera position. Then, body heights of
approaching drivers are determined based on n-sets of extracted foot and head points.

The omnidirectional cameras, which is attached to each side-view mirror of a car, is also used to
obtain 3D ambiance information of the surrounding next to the car. A mechanical device within
the side-view mirror vertically positions the camera to provide a motion-based stereo configu-
ration. The device is also equipped with a position sensor to determine the vertical positions of
the camera. However, clearances in the mechanical device cannot be detected by the position
sensor and lead to wrongly determined camera positions. Fur this purpose, an egomotion esti-
mation algorithm refines the estimation of the camera positions using image correspondences
only. The key problem addressed in this thesis is the generation of solid 3D ambiance informa-
tion from low-textured and low-resolution panoramic images. First, the fundamentals of stereo
vision with omnidirectional cameras are introduced. Secondly, a method is proposed to rectify
panoramic images in order to ease 1D correspondence search in pairs of panoramic images.
Thereafter, a stereo algorithm is presented to produce dense disparity maps from low-textured
and low-resolution panoramic images. 3D ambiance information is generated using triangula-
tion, and a new refinement stage is proposed to remove disturbances and outliers in 3D data
obtained. Lastly, a new method is introduced to determine the position error in 3D-data. This
position error depends both on the calibration error and on the quantization error of the omni-
directional camera system used in the stereo setup. Finally, the thesis analyzes measurement
ranges and dead-zones of stereo setups based on omnidirectional cameras for several, common
projections.

xiv



Zusammenfassung

Omnidirektionale Kameras sind heutzutage überwiegend in der Robotik zu finden. Durch ihren
sehr großen Sichtbereich gegenüber perspektivischen Kameras und auch aufgrund ihres mitt-
lerweile zunehmend kompakteren Aufbaus ergeben sich neue Anwendungsmöglichkeiten im
Bereich der Fahrerassistenzsysteme.

In dieser Arbeit wird ein neuartiges Informationssystem vorgestellt, das den seitlichen Außen-
raum einer Fahrzeugtüre auf Hindernisse überwacht. Die gewonnenen Hindernisinformationen
dienen einer Türsteuereinheit als Input für eine haptisch unterstützte Führung der Fahrzeugtür
zur Vermeidung von Kollisionen beim Türöffnen. Das Informationssystem besteht aus einer
omnidirektionalen Kamera, die in den Seitenspiegel des Fahrzeuges integriert ist und aus einer
Bildverarbeitungseinheit zur Auswertung der gewonnenen Bilddaten. Neben der Hinderniser-
fassung wird mit diesem System die Größe von sich annähernden Fahrern bestimmt. Anhand
der Größe wird die Position des Fahrersitzes individuell eingestellt und damit ein verbesser-
ter Einstieg ermöglicht. Die Schwerpunkte dieser Arbeit liegen zum einen auf der Entwick-
lung von Bildverarbeitungsalgorithmen zur robusten Generierung von Umgebungsinformatio-
nen, und zum anderen auf der Entwicklung von Methoden zur absoluten Größenbestimmung
des Fahrers mit nur einer Kamera.

Im ersten Teil der Arbeit werden die Grundlagen zu omnidirektionalen Kameras mit Fokus auf
Kamerakalibration und Bildtransformation beschrieben. Neben der Beschreibung der physika-
lischen und mathematischen Eigenschaften omnidirektionaler Kameras wird ein Kameramodell
vorgestellt, welches zur Transformation von Originalbildern der Kamera in perspektivisch kor-
rekte Panoramabilder benötigt wird. Das Kameramodell stellt dabei gleichzeitig einen Zusam-
menhang zwischen Welt- und Kamerakoordinaten her. Die intrinsischen und extrinsischen Para-
meter der Kamera werden mit Hilfe von Schachbrettmustern und eines Kalibrierverfahrens be-
stimmt. In dieser Arbeit wird das bestehende Kalibrierverfahren um einen robusten Schachbrett-
und Eckpunktextraktor erweitert, um die bisher notwendige manuelle Selektion der Eckpunkte
zu automatisieren.

Es gibt viele Projektionsarten, die zur Transformation von Originalbildern in Panoramabilder
verwendet werden können. In dieser Arbeit wird die Pixeldichte als ein neues Werkzeug zur
Bewertung unterschiedlicher Projektionsarten und zur Bewertung verschiedener Kamerakon-
figurationen vorgeschlagen. Die Pixeldichte ist ein Maß, welches die Ausnutzung der Sensor-
pixel in transformierten Bildern angibt. Es wird zudem gezeigt, dass die häufig verwendete
zylindrische Projektion aufgrund schlechter Sensorpixelnutzung in Panoramabildern für viele
Kamerakonfigurationen nicht geeignet ist.
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Zusammenfassung

Im zweiten Teil der Arbeit wird ein neuer Algorithmus zur absoluten Größenbestimmung des
Fahrers mit einer omnidirektionalen Kamera vorgestellt. Anhand der Körpergröße des Fah-
rers wird die Position des Sitzes zur Verbesserung des Einstiegs voreingestellt. Die Größen-
vermessung wird als zweistufiges Verfahren realisiert: In einem ersten Schritt wird der Fahrer
vom Hintergrund separiert und dessen Größe in einem zweiten Schritt mit Hilfe einer modell-
basierten Funktion bestimmt. Zur Extraktion des Fahrers wird ein Kalman-basiertes Hinter-
grundmodell beschrieben, welches um Verfahren zur Kompensation von Schatten und Beleuch-
tungsänderungen erweitert wird. Weiterhin wird eine Initialisierung des Hintergrundes vorge-
stellt, welche eine Hintergrundgenerierung auch an vielbefahrenen Straßen ermöglicht. Eine
absolute Schätzung der Körpergröße wird mittels der Relation der Kamera gegenüber dem Bo-
den ermöglicht. Es wird eine neue, modellbasierte Funktion vorgeschlagen, mit deren Hilfe die
Relation allein anhand der Bilddaten bestimmt werden kann. Diese Funktion berücksichtigt ex-
plizit Kameraverkippungen und hat ein globales Minimum, wenn die geschätzte Relation mit
der tatsächlichen Relation übereinstimmt. Basierend auf dieser Relation und extrahierten Fuß-
und Kopfpunkten kann die absolute Größe von sich annähernden Fahrern bestimmt werden.

Im letzten Teil der Arbeit wird ein auf Motion-Stereo basierender Ansatz zur Bestimmung von
Hindernissen im Arbeitsraum der Tür vorgestellt. Dabei werden die Grundlagen zu Stereo mit
omnidirektionalen Kameras sowie die Rektifizierung von Panoramabildern beschrieben. Bei
der Rektifizierung werden Originalbilder derart in Panoramabilder transformiert, dass eine 1D-
Korrespondenzsuche möglich ist. Mit Hilfe eines mechanischen Aufbaus wird die Kamera an
verschiedene, vertikale Positionen gefahren und damit eine Stereokonfiguration erreicht. Auf-
grund von Spiel in der Mechanik kann die Lage der Kameras zueinander sensorisch nicht genau
bestimmt werden. Anhand von Bildkorrespondenzen jedoch kann die Lage der Kamera zuein-
ander geschätzt und damit die sensorisch bestimmte Lage verbessert werden. Es wird weiterhin
ein Stereoverfahren vorgestellt, mit dessen Hilfe dichte Disparitätskarten von texturarmen Pan-
oramabildern mit geringer Auflösung berechnet werden können. 3D-Hindernisinformationen
werden mit Hilfe von Triangulation erzeugt. Weiterhin wird ein Verfahren vorgeschlagen, wel-
ches Ausreißer in den Daten erkennt und beseitigt. Zudem wird der durch Quantisierungseffekte
und durch Ungenauigkeiten in der Kalibration hervorgerufene Fehler der Hindernisinformatio-
nen beschrieben und die Messbereiche sowie die blinden Zonen der am häufigsten verwendeten
Projektionen vorgestellt.

xvi



1 Introduction

Mechatronic systems are nowadays essential for the automotive industry and have gained con-
tinuously in importance. They are used for increasing car efficiency and reduce emission
through efficient electronic engine management with exhaust aftertreatment. Mechatronic sys-
tems are also essential to meet global homologation requirements and environmental laws and
numerous components are integrated and connected to in-car networks. They are employed
to meet and to satisfy customers’ needs for more comfort and safety. Despite the advantages
achieved, there is still potential for further improvements and for new developments addressing
passenger comfort related issues in the domain of automotive system engineering [2].

For these reasons, a novel research project originated in the context of an industry project,
which was conducted at the Technische Universität München and the BMW Group, addresses
new developments in mechatronic systems and comfort related issues. Based on the example
of an ergonomically optimized ingress/egress support system, the main concern of the project
is to improve mechatronic systems and the development processes deployed. The underlying
scenario dealt with is an everyday problem of ingress and egress in tight parking lots: Particu-
larly, long car doors cannot be opened wide enough to provide a comfortable and quick ingress/
egress in tight parking lots. For some car doors, passengers sometimes even have to steady the
door during their movement due to weak door breaks or inappropriate locking positions. This
leads to uncomfortable situations for passengers and to an increased discomfort during ingress/
egress. For this reason, passenger comfort-related issues have attracted a lot of attention and are
intense research topics in the area of automotive ergonomics, in particular for ingress/egress in
tight parking lots (see Figure 1.1).

Figure 1.1: Cars parked in tight parking lots. The car doors cannot be opened wide enough to
provide optimal space for comfortable ingress/ egress.

With help of the potential of mechatronics, an innovative car door system – the smart car door
– with ingress/ egress support was developed to maximize passengers comfort in today’s two
door cars. Ergonomic investigations are conducted and function as constraints for the technical
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1 Introduction

Figure 1.2: Prototype of the smart car door. The door consists of a multi-kinematic door, a
haptic support system and an integrated camera to detect clamping situations. Ad-
ditionally, a camera is integrated with the side-view mirror to monitor the ambiance
next to the door and to estimate the body height of approaching drivers.

realization in different fields of development. On this account, a method has been built up
to measure arising discomfort and to generate ergonomic information that is required for the
development progress deployed [19]. Based on these constraints a multi-kinematic door was
implemented that fulfills all necessary functions. The multi-disciplinary development process
of the smart car door included five different fields of research. These fields are kinematics,
sensorics, virtual prototyping and cybernetics, ergonomics and process development.

The smart car door consists of an actuated two hinge kinematic system to allow situation-
dependent door openings and to provide optimal space for ingress/egress [20], [21]. A haptic
support system along with a control unit supports the door user with haptic guidance along
situation-dependent opening paths while opening the door [22]. The smart car door is equipped
with sensors to obtain environment information of the surroundings next to the door: The infor-
mation serves as an input for the control unit to compute situation-dependent opening paths in
order to avoid potential collisions with collateral obstacles. Additionally, the sensors are used
to detect approaching car drivers and passengers to estimate their body heights. The determined
body heights function as a basis for personalized pre-adjustments of the seat and the vehicle’s
door opening path. Finally, the actuated smart car door has been evaluated by means of user
studies. Figure 1.2 illustrates the smart car door prototype. The prototype consists of the ac-
tuated two-hinge door, the haptic support system and a camera integrated with the side-view
mirror. The camera in question is an omnidirectional camera whose data are used to obtain 3D
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1.1 Motivation

Sensor Type Sensor Driver Assistance System
Non-Vision Lidar Adaptive Cruise Control (ACC)

Radar Blind Spot Monitoring (BSM)
Ultrasound Parking Assistance

Collision Mitigation Systems (CMS)
Automatic Emergency Break (AEB)

Vision Rear View Parking Assistance
Side View Parking Assistance
Near Infra Read Active Night View (Night View)
Far Infra Read Passive Night View (Night Vision)
Single Camera Front View Lane Departure Warning (LDW)
Stereo Front View Traffic Sign Recognition (TSR)

Drowsiness Detection (DDS)
Obstacle Detection
Pedestrian Recognition

Table 1.1: Overview of commonly used sensors for advanced driver assistance systems (Murphy
[23]).

ambiance information and to estimate body heights of approaching drivers. Another omnidirec-
tional camera is attached inside the car door to avoid clamping situations by detecting obstacles
between the car door and the door frame.

1.1 Motivation
This thesis focuses on the development of the sensor subsystem along with image processing
algorithms for ambiance monitoring and driver body height estimation. The algorithms should
obtain 3D-ambiance information of the surroundings next to the car door and should estimate
body heights of approaching drivers. Based on the ambiance information the control unit com-
putes collision-free, situation-dependent door openings and pre-adjusts the driver seat according
to body heights. Ideally, the sensor subsystem should be suitable both to obtain ambiance in-
formation and to extract body heights of approaching drivers.

In today’s automobiles a large number of sensors are used for driver assistance systems in high-
end cars. These sensors monitor the surroundings of the car to detect obstacles or pedestrians.
Their information serves as an input to advanced driver assistance systems to support drivers
during driving or to assist them with parking vehicles into tight parking lots. Table 1.1 provides
an overview of commonly used sensors for advanced driver assistance systems.

Most of the sensor systems integrated in high-end cars are designed to monitor the ambiance
behind or in front of the car. For example, stereo cameras detect obstacles and pedestrians in
front of the car, or Lidar-based sensor systems are used for Adaptive Cruise Control (ACC).
However, there are only a few sensor systems that might be used to monitor lateral areas of
vehicles. Side-view cameras are an example of a sensor system that might be used for ambiance
monitoring. These cameras are attached to the side-view mirrors to display the areas next to the
car and to compute a bird-eye view of the surroundings along with image data from front-view
and rear-view cameras. Driver assistance systems use this bird-eye view to assist drivers when
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(a) Blind spot monitoring (b) Parking assistance

Figure 1.3: Omnidirectional cameras attached to large vehicles for blind spot monitoring [24]
(a) and as sensor system for parking assistance aid [25] (b).

parking the vehicle. The side-view cameras are designed to monitor the ambiance next to the
car and are suitable for detecting obstacles in the proximity of the car door. But the side-view
cameras have only a limited field of view, which is focused towards the floor regions close to
the car so that only the lower parts of approaching drivers could be detected. For these reasons,
side-view cameras are not suitable for extracting approaching drivers and for estimating their
body heights.

In contrast to vision sensors, ultrasonic-, radar- or lidar-based sensors provide 3D-information
of measured environments directly. But the vertical measurement range of such sensors is
limited: Therefore, many sensors would be necessary to monitor the ambiance next to the car
door in its entirety. Moreover, it is hard to measure body heights of approaching drivers with
radar sensors or lidar sensors.

Omnidirectional cameras, however, overcome this limitation and provide both a large vertical
field of view (≈ 110◦) and a large horizontal field of view of 360◦. Figure 1.3 illustrates au-
tomotive applications that use omnidirectional cameras. In the first application, the cameras
are attached to trucks in order to monitor blind spots of large vehicles [24] (see Figure 1.3(a)).
The cameras are also attached to a car for providing a rear view of a car for a parking assisting
systems [25] (see Figure 1.3(b)). Integrated with the side-view mirror of a car, omnidirectional
cameras can both monitor the ambiance close to the door in its entirety and can extract ap-
proaching drivers. They are also suitable for combining the functions ambiance monitoring and
driver body height estimation within one sensor subsystem.

The omnidirectional camera, which is integrated with the side-view mirror of the smart car
door, consists of a perspective, monochromatic camera focusing on a hyperboloidal mirror. A
very compact camera with VGA-resolution of 640 × 480 pixels has been chosen due to space
and cost constraints. VGA-resolution might be sufficient for applications based on perspective
cameras, but the use of imaging devices such as mirrors to enhance the horizontal field of view
leads to a loss of resolution in panoramic images. Hence, image processing algorithms must be
able to process panoramic images with low resolution.
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1.1 Motivation

The omnidirectional camera is suitable both to obtain 3D-ambiance information and to esti-
mate body heights of approaching drivers. 3D-ambiance information can be obtained from two
cameras or from one camera positioned at different poses. A fold in and fold out movement
of the side-view mirror in high-end cars might be used to position the camera if the camera is
integrated with the side-view mirror of a car. However, such a fold in and fold out movement
was not available: Therefore, a mechanical device has been attached to the side-view mirror to
vertically position the camera. The algorithm proposed in this thesis computes 3D-ambiance
information from images captured at different poses.

1.1.1 Scenario

A typical interaction between an approaching driver and the smart car door for ingress may look
something like this: The driver activates the sensor system when unlocking the door with the
key. The camera is moved to several positions. At these positions images are captured and 3D-
ambiance information is computed. Thereafter, the camera remains static and the algorithms
extract drivers to estimate their body heights. Based on height data and on the 3D-ambiance
information, the control unit pre-adjusts the driver seat to ease ingress and pre-computes indi-
vidual opening paths to avoid collisions when opening the car door.

A similar procedure may look like this for standard egress scenarios: After parking, the car
activates the smart car door. The camera is moved to several positions and 3D-ambiance in-
formation are computed. Based on this ambiance information, the control unit pre-computes
potential opening paths to avoid collisions with obstacles close to the door when opening the
car door. These scenarios allow to formulate certain preconditions under which driver extrac-
tion, body height estimation and 3D-ambiance generation algorithms may and should operate:

• All relevant obstacles in a parking scenario must be static while the camera moves.

• Obstacles must have a minimum distance of 50cm to the car in order to allow car door
openings.

• To generate 3D-ambiance information, only obstacles in the required space for door open-
ing are of interest.

• Less textured objects such as white walls or posts are very common in typical parking
scenarios: Therefore, the algorithms must be able to obtain ambiance information from
low-textured, gray-scaled and low-resolution panoramic images.

• Body height estimation is performed assuming a static camera for a short time interval.
This interval may be used to compute a background image from the environment next to
the door. The background image helps to separate approaching drivers from the environ-
ment and to estimate their body heights.

• The algorithms must be able to quickly extract approaching drivers – even if they are far
away from the car – in low-resolution panoramic images.
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1.1.2 Contributions of this thesis

This thesis focuses on the camera sub-system of the smart car door and on image processing
algorithms to monitor the ambiance next to the door and to estimate body heights of approaching
driver. In particular, the thesis addresses contributions in the area of camera calibration and
image transformation, absolute body height estimation with a single omnidirectional camera
and ambiance modeling of static surroundings close to the car door.

• A new extension to existing calibration algorithms is presented to automatically extract
calibration pattern for camera calibration. The proposed method addresses robust ex-
traction of calibration patterns in low resolution images under various illumination con-
ditions. Additionally, this thesis analyzes the suitability of several projections to trans-
form original images into panoramic images. It also demonstrates that the commonly
chosen cylindrical projection is not the best projection to transform original images into
panoramic images. Therefore, a novel measurement value is introduced that allows for an
analysis of projections in terms of best utilization of sensor pixels in panoramic images.
This value is also suitable for designing well-dimensioned mirror/ camera configurations
to obtain best utilization of sensor pixels in panoramic images.

• A new method is presented to estimate absolute body heights of approaching drivers
with single omnidirectional cameras integrated within a car. Body heights are used to
individually adjust the driver seat in order to improve ingress in tight parking lots. The
thesis describes how drivers can be extracted in low-resolution, gray-scaled panoramic
images and how absolute body height estimation can be performed with a single camera.
The proposed method is suitable for a wide range of parking scenarios and overcomes the
scaling problem for camera-based measurements with single cameras.

• A motion-stereo-based algorithm is presented which generates 3D-ambiance informa-
tion of the surroundings next to the car door. The proposed algorithm is able to obtain
3D-information from pairs of low-resolution panoramic images captured in low-textured
environments – such as white walls in a parking garage. A mechanical device integrated
with the side-view mirror vertically positions the camera to obtain a stereoscopic con-
figuration. Camera positions are initially determined by a position sensor attached to
the mechanical device and are refined by an image-based ego-motion estimation algo-
rithm to overcome inaccuracies in the camera positions caused by mechanical clearances.
The thesis also presents a new study that addresses 3D-position errors of the ambiance
information computed from stereo disparity maps. The position error depends on the cal-
ibration and quantization error of the omnidirectional camera and strongly influences the
quality of 3D-data obtained.

1.2 Thesis overview

All contributions described in Section 1.1.2 are presented in separate chapters. Each of these
chapters includes a section that is dedicated to state-of-the-art, to discussion and to conclusion.
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Chapter 2 introduces the field of omnidirectional cameras with particular focus on camera cal-
ibration and image rectification. It presents the physical and mathematical properties of omni-
directional cameras and describes the underlying camera model to obtain perspectively correct
images. The camera model is also required to transform original images into panoramic im-
ages and to obtain 3D-data from sensor coordinates. A calibration scheme is presented which
estimates the calibration parameters using calibration pattern. A novel extension to this cali-
bration scheme is proposed to enable robust, automatic extraction of calibration patterns in low
resolution images under various illumination conditions.

Several projections are presented to transform original images into panoramic images in or-
der to ease image processing with omnidirectional cameras. Additionally, a new value – the
pixel density – is proposed as a new method to evaluate projections for image transformation
and to compare camera/ mirror configurations in terms of best utilization of sensor pixels for
panoramic images. In this manner, best resolution in panoramic images can be achieved for any
omnidirectional camera. It is also shown that the commonly chosen cylindrical projection is not
suitable for some omnidirectional cameras. The pixel density as a new tool to compare several
projections and camera configurations was first proposed in the field of camera calibration and
image transformation.

Chapter 3 addresses the problem of absolute body height estimation using a single omnidi-
rectional camera in the automotive domain. In this application, body heights of approaching
drivers are estimated for adjusting the seat position in order to improve ingress in tight park-
ing lots. Body height estimation is realized in two stages. These stages are driver extraction
using a Kalman-based background model and body height determination using a model-based
camera-ground function.

This chapter describes a Kalman-based background model that has been extended by statistical
functions to increase its robustness against shadows and illumination changes. Additionally,
an initialization scheme is presented to allow background initialization in scenarios with high
volume of traffic. The key feature of body height estimation with a single omnidirectional cam-
era is the estimated position and orientation of the camera relative to the ground. Position and
orientation of the camera vary for each parking scenario and must automatically be estimated
from image data only. Therefore, a novel, model-based camera-ground function is introduced
that estimates the orientation of the camera relative to the ground. Estimation is based on image
data captured from approaching drivers. The function explicitly considers tilt caused by inclined
parked cars and has a global minimum when the estimated camera orientation best matches real
camera orientation. This method was first proposed in the field of omnidirectional cameras and
was also first used in the domain of automotive system engineering.

Chapter 4 presents a method to generated 3D-ambiance information with a single omnidirec-
tional camera and motion-stereo. The control unit of the smart door requires ambiance infor-
mation to avoid collisions by computing situation-dependent opening paths. The key problem
addressed in this chapter is the generation of solid 3D-ambiance information from low-textured
low-resolution panoramic images.

This chapter introduces the fundamentals of stereo vision with panoramic images. It also
presents a method to rectify panoramic images enabling 1D-correspondence search in pairs
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of panoramic stereo images. Rectification is based on estimated camera positions provided by
the mechanical device. Clearances in the mechanical device, however, cannot be detected and
lead to wrongly determined camera poses. Therefore, an egomotion estimation algorithm is
presented to refine the camera positions using images correspondences only.

The chapter describes the semi-global-matching stereo algorithm to generate dense disparity
maps from low-textured, low-resolution panoramic images. It also introduces the generation of
3D-ambiance information using triangulation and proposes a new refinement stage to remove
disturbances and outliers in 3D-data. Additionally, this chapter proposes a method to determine
the position error and the accuracy of 3D-data obtained. The position error depends on the cal-
ibration and on the quantization error of the camera system. Finally, measurement ranges and
dead-zones for stereo setups based on omnidirectional cameras are analyzed for common pro-
jections. In this thesis, motion-stereo-based generation of 3D-ambiance information by means
of omnidirectional cameras and the algorithms to estimate position errors of 3D-data were first
proposed in the field of automotive system engineering for smart car doors.

Chapter 5 summarizes the thesis by drawing a general conclusion and indicates potential re-
search directions for future work.
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2 Omnidirectional cameras

2.1 Introduction

Omnidirectional cameras consist of a perspective camera together with an imaging device com-
posed of a mirror-lens combination. Due to this imaging device, omnidirectional cameras
provide a very large field of view compared to other cameras and are, therefore, particularly
suitable for surveillance or ambiance monitoring. A lot of research has been done over the
last decades addressing geometry and properties of omnidirectional cameras, mathematical for-
malism (camera models) especially targeting omnidirectional cameras and calibration of these
camera systems.

In general, camera systems that have a projection center are called central projection systems.
The projection center, also called the single effective viewpoint, permits the generation of ge-
ometrically correct perspective panoramic images from images captured by an omnidirectional
camera. It is also required to extract metric information about the environment from 2D-images
and to apply the known theory of epipolar geometry to omnidirectional cameras. To achieve
this, a camera function must be determined to project 3D-world-points into 2D-image-points on
the camera sensor. This function is also called the camera model, and its parameters have to be
determined during camera calibration.

During the calibration procedure, a planar chessboard pattern – with known geometry – is shown
at several positions and orientations. Calibration images are captured by the omnidirectional
camera and serve as an input to the calibration procedure. The calibration procedure computes
the camera parameters and determines the camera model from the 2D-position of chessboard
corners in calibration images. These chessboard corners, however, had to be selected manually
in state of the art calibration procedures [26, 27]. This is very time-consuming and can lead
to inaccuracies in the calibration results. Therefore, an automatic chessboard corner extraction
algorithm would be highly desirable both to automate the calibration procedure to be used in
the automotive domain and to improve the calibration results. In this chapter, an algorithm
is proposed that automatically extracts chessboard corners in calibration images and that is
strongly robust under various illumination conditions.

Original images from omnidirectional cameras are highly distorted and cannot simply be inter-
preted for normal image processing routines. For example, straight borders of real, rectangular
objects might be projected as curves in original images. For this reason, conventional image
processing algorithms such as Hough-transformation are no longer suitable to be run directly
on images from omnidirectional cameras. Although methods and procedures exist to process
original images even from uncalibrated omnidirectional cameras, it is hard to obtain useful ob-
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ject properties like width and size from the images. A common way to overcome this limitation
is to transform original images into panoramic images. The transformation process projects the
intensity values of each sensor pixel onto a new pixel position on the panoramic image plane.
This process is also called image rectification and requires a calibrated omnidirectional camera
model. Besides spherical, conic and plane projections, the most common projection used to
transform original images into panoramic images is the cylindric projection, which is mainly
used for applications in robotics. However, there has been no evaluation in literature that studies
different projections in terms of best utilization of intensity values from sensor pixels projected
onto pixel positions in panoramic images. For this reason, this thesis proposes a new value –
the pixel density – as a measurement value for comparing different projections in terms of best
utilization of sensor pixels in panoramic images. In this manner, best utilization of sensor pixels
and, hence, best resolution in panoramic images can be obtained for any camera configuration.

This chapter describes the geometrical and the mathematical principles of omnidirectional cam-
eras, which are prerequisites for image-based body-height estimation and stereo-based am-
biance monitoring. For both applications, a known camera model and, hence, camera cali-
bration along with image rectification are prerequisites to extract object properties like body
heights of approaching drivers or metric, 3D ambiance information from an omnidirectional
camera.

The outline of this chapter is as follows: The single point of view theorem, the geometry of
omnidirectional cameras and the camera model used are described in Section 2.2. Section 2.3
illustrates the calibration procedure and describes the automatic chessboard corner extraction
algorithm. Section 2.4 introduces methods to transform original images into panoramic images.
The pixel density as a new measurement value for evaluating projections in terms of best utiliza-
tion of sensor pixels in rectified images is proposed in Section 2.5, and experiments and results
are presented in Section 2.6. This chapter ends with a discussion and conclusion in Section 2.7.

2.2 Geometry of omnidirectional cameras

2.2.1 The single point of view property

This section summarizes the geometry of omnidirectional cameras and the single point of view
theorem. Very nice descriptions of the geometry of omnidirectional cameras and the single
point of view theorem were provided by Barreto et al. [28], Micusik [29] and by Scaramuzza
[30] and are briefly presented below.

A camera has a single point of view (SPOV) (i.e. projection center) and is called a central pro-
jection system if the light rays from 3D-scene points meet in a single point [30, 31]. Perspective
cameras are examples of central projection systems and project points from a 3D-scene into
points on a 2D-image plane (see Figure 2.1(a)). The projection is linear and can be described
with a 4×4 projection matrix P using homogeneous coordinates. It is also known as the pin-hole
model of perspective cameras [32, 33, 34, 35] and can be modeled by a bundle of rays passing
3D-scene points, the single point of view and intersect the image plane. Imaging devices can be
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(a) (b) (c) (d)

Figure 2.1: Examples of cameras with a single point of view (SPOV) (a,b), and examples of
cameras without a single point of view (c,d) [30].

used to enhance the horizontal and the vertical field of view of conventional perspective cam-
eras. However, some of these systems are also central projection systems but their projections
cannot be modeled by a pin-hole model due to their very high distortions. A central omnidi-
rectional camera is such a projection system and is also called a catadioptric camera due to its
imaging device consisting of mirrors and lenses (see Figure 2.1(b)). Many vision systems do
not have a single point of view. Instead, a locus of viewpoints is formed and the vision system
is called a non-central camera system. Figure 2.1 illustrates examples of non-central camera
systems both for perspective cameras (see Figure 2.1(c)) and for omnidirectional cameras (see
Figure 2.1(d)). In general, it is rather difficult to manufacture precise central projection systems
due to small construction errors and misalignments of lenses and mirrors. For these reasons,
Micusik [29] shows that the calibration techniques developed for central projection systems
are also suitable for non central projection systems, in particular for omnidirectional cameras .
These calibration techniques estimate a potential location of an effective single point of view.
Previous work related to non central cameras may be found in [36, 37, 38, 39].

A single effective viewpoint permits the generation of geometrically correct panoramic images
from images captured by an omnidirectional camera. In other words, geometric properties
such as object height or object size can easily be obtained from panoramic images. The single
effective viewpoint is also a prerequisite for applying the known theory of epipolar geometry
(e.g., see [32]) to omnidirectional cameras. The theory of epipolar geometry developed for
perspective cameras can be easily adapted to omnidirectional cameras to perform ego-motion
estimation and to obtain structure from motion from panoramic images. In this thesis, ego-
motion estimation and structure from motion are used to refine estimated camera poses and to
obtain 3D ambiance information from the surroundings in the proximity of the car door.

The transformation of original images into perspectively correct panoramic images is possi-
ble with the help of the single point of view constraint since every pixel in an original image
measures the intensity of light passing through the viewpoint in one particular direction. If the
camera is calibrated and if the camera model of the omnidirectional camera is available, then the
3D-direction of each light ray can be precomputed for each sensor pixel. The intensity values,
which are related to particular light rays and measured by the sensor pixels, can then directly be
mapped onto a projection plane to form panoramic images.
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(a) (b) (c) (d) (e)

Figure 2.2: Imaging devices for omnidirectional cameras: spherical mirror (a), conical mirror
(b), hyperbolic mirror (c), conical mirror (d) and parabolic mirror with telecentric
lens (e) [14].

2.2.2 Geometry of omnidirectional cameras

René Descartes [40] presented the concept of central catadioptric cameras. This concept al-
ready appeared in Descartes’ treatise Discours de la Methode Discours de la Methode in 1637
and describes the phenomenon that reflective as well as refractive ovals focus light into a single
point when they are illuminated from another properly chosen point. Later, Feynman et al.[41]
extended this idea in 1963 and Rees [42] successfully applied an omnidirectional camera system
for a patent in 1970 for military applications. Ishiguro et al. [43] gave an overview of omni-
directional cameras and compared them in terms of mirror types, field of view and in terms of
manufacturing in 1998. Figure 2.2 illustrates common omnidirectional cameras described by
Ishiguro et al.. Figures 2.2(a), 2.2(b) and Figure 2.2(c) illustrate omnidirectional cameras that
consist of a spherical, a conical and a hyperbolic mirror along with a conventional perspective
camera. By contrast, Figures 2.2(d) and Figure 2.2(e) illustrate omnidirectional cameras with
special mirrors. Omnidirectional cameras with such mirrors require the use of telecentric lenses.

At the same time, Nayar and Baker [31, 44, 45] made the concept of omnidirectional cam-
eras popular in a general mathematical formalism and introduced it to the computer vision
community in 1998. Their work describes the mathematics for the complete class of omnidi-
rectional cameras that have a single effective viewpoint. These cameras can be constructed with
a single mirror and a conventional perspective camera assuming a pinhole camera model. The
important contribution of their work is the derivation of the complete class of omnidirectional
cameras with a single effective viewpoint using only two parameters. These parameters are the
distance c between the projection center of the perspective camera (p = (0, c)) and the effective
viewpoint (v = (0, 0)) and parameter k (also called mirror constant). Parameter k represents
the curvature of mirrors used for an omnidirectional camera (see Figure 2.3). Four potential
camera- and mirror-configurations within that class are feasible for constructing central projec-
tion cameras, but two configurations are not useful for camera design (degenerated configura-
tions). These four configurations combine a perspective camera together with a planar mirror
(see Figure 2.3(a)), with an ellipsoidal mirror (see Figure 2.3(b)), with a hyperbolic mirror (see
Figure 2.3(c)) and an orthographic camera with a paraboloidal mirror (see Figure 2.3(d)).

There exist two degenerated configurations that also fulfill the single point of view constraint.
These configurations combine a perspective camera with a conical mirror (see Figure 2.4(a))
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Figure 2.3: Non-degenerated omnidirectional cameras with a single point of view [31].

and with a spherical mirror (see Figure 2.4(b)). However, the degenerated configurations are
not useful for constructing omnidirectional cameras. In the first case, the perspective camera
has to be placed into the center of the sphere meaning that the camera would see only itself.
To obtain the single point of view property for the second case, the shape of the conical mirror
would be the limit of the field of view of the perspective camera and the top of the cone must
be in the projection center of the camera. The single point of view property might be satisfied
for this case but the camera would see nothing.

Following Eq. 2.1 and Eq. 2.2, Nayar et al. proposed a general, algebraical constraint for all
omnidirectional cameras with a single point of view. This constraint depends only on the mirror

13



2 Omnidirectional cameras
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Figure 2.4: Degenerated omnidirectional cameras with single point of view [31].

characteristic k and on the distance c between the projection center and the single point of view.(
z − c

2

)2

− r2

(
k

2
− 1

)
=

c2

4

(
k − 2

k

)
(k ≤ 2) (2.1)

(
z − c

2

)2

+ r2

(
1 +

k

2

)
=

(
2k + c2

4

)
(k > 0) (2.2)

where r =
√

x2 + y2. Thus, the world coordinate system is located within the projection center
of the mirror. Nayar et al proposed solutions for several mirror types by choosing different cam-
era constants k and c. However, the largest vertical field of view is obtained with a hyperbolic
mirror using the camera constants k > 2 and c > 0. For this configuration, Eq. 2.1 becomes

1

ah
2

(
z − c

2

)2

− 1

bh
2 = 1 with ah =

c

2

√
k − 2

k
, bh =

c

2

√
2

k
. (2.3)

In this thesis, the constraint is utilized to design an omnidirectional camera that is based on a
hyperbolic mirror and that has a single point of view. In general, cameras designed in this man-
ner have only a pseudo single point of view due to misalignments and inaccuracies that occurred
during manufacturing. However, the camera model and the calibration process described in the
next sections are based on this important constraint and have proved to be feasible for cameras
with a pseudo single point of view.

2.2.3 Camera model

In this section, the camera model of an omnidirectional camera is presented. It describes a
mathematical relation between 3D-world points of a 3D-scene and their projection onto the 2D-
image plane (sensor plane). The camera model is also prerequisite for transforming original
images into panoramic images. The camera model of a standard perspective camera can be
described following Eq. 2.4.

λx = P ·X. (2.4)
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2.2 Geometry of omnidirectional cameras

Figure 2.5: Omnidirectional camera model proposed by Micusik [29].

Thereby, X = [X, Y, Z, 1] represents the homogeneous coordinates of a 3D-scene point,
whereas vector x = [x, y, 1] describes the normalized coordinates of an image point x. Fur-
thermore, let P ∈ R4×3 be a projection matrix so that P = [R|T]. The translation T and the
rotation R express a relation between the world frame and the camera reference frame. This
projection can be understood as a mapping of 3D-scene points X into an image point x on the
sensor plane using a straight line connecting both the 3D-scene points and the projection on
the sensor plane passing through the projection center [29]. In other words, all 3D-scene points
located on this line are projected into the same image point on the sensor plane. With this
representation, image points on the sensor plane are projections of 3D-scene points that can be
located in front or behind the camera.

In contrast to conventional perspective cameras, omnidirectional cameras project 3D-scene
points located in front of the camera into certain image points and 3D-scene points located
behind the camera into others. Thus, Micusik [29] introduced a formalism to represent image
points of omnidirectional cameras as a set of unit vectors in R3 using a unified spherical camera
model. He derived the projection function for omnidirectional cameras from Eq. 2.4 as follows.

λq = P ·X, λ > 0, (2.5)

where q = [x y z] is a unit vector (i.e. ‖q‖ = 1) representing the direction of an image point.
Imagine a 3D-scene point X that is observed by an omnidirectional camera (see Figure 2.5).
Assuming the camera model proposed by Micusik [29], a vector p′′ = (x′′T , z′′) describing
the direction to the point X can be found that has the same direction as the unit vector q. The
projection of vector p′′ is mapped into an image point u′′ on a virtual sensor plane so that
u′′ is collinear with x′′ (see Figure 2.5). In other words, the camera maps vector p′′ into an
image point u′′ using two transformation functions g and h. Following Eq. 2.6, Micusik [29]
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2 Omnidirectional cameras

introduced a formalism to describe this projection:

λp′′ =

[
h(|u′′|)u′′

g(|u′′|)

]
(2.6)

Thereby, the two functions g, h ∈ R → R are introduced to project vector p′′ to u′′. These
functions depend on the mirror type (e.g. parabolic, hyperbolic mirror) and on the mirror shape.
The function g can be seen as a function to describe the mirror profile and h as a function to
orthographically project vector p′′ into a point h(‖u′′‖)u′′ on the sensor plane. Scaramuzza
modified this camera model to the effect that he chooses one function f = g/h instead of two
distinctive functions g, h. This allows to set function h to unity and to facilitate Eq. 2.6 to
Eq. 2.7.

λp′′ = λ

[
u′′

f(|u′′|)

]
= P ·X (2.7)

However, three important assumptions are made and must be met when dealing with omnidi-
rectional cameras using the camera model described by Micusik [29]:
i): The mirror is about approximately rotationally symmetric with respect to its axis.
ii): The mirror is perfectly aligned to a virtual sensor plane so that its z-axis is perpendicular to
the sensor plane.
iii): The omnidirectional camera is assumed to be a central projection camera meeting the single
point of view theorem.

2.2.4 Scaramuzza’s representation of omnidirectional cameras

Besides other camera models, Scaramuzza [30] proposed a unified Taylor model to derive the
projection function that maps 3D-scene points onto a 2D-image plane and is briefly presented
below. The origin of the camera-coordinate system is also the origin of the world-coordinate
system and is located in the single point of view and, hence, in the projection center of the mir-
ror. 3D-scene points are projected onto a virtual, ideally aligned sensor plane. The image points
from the ideal sensor plane are mapped onto the real sensor plane using affine transformations.

Figure 2.6(a) illustrates the projection of a 3D-scene point P ′′ onto the ideal sensor plane E ′′.
The ideal sensor plane E ′′ has the coordinates u′′, v′′ and is assumed to be perfectly aligned
to the mirror. For this reason, the projection center of the mirror and the origin of the camera
coordinate system u′′, v′′ are assumed to be coincident with the image center Oc on the ideal
sensor plane. Additionally, the boundary of the mirror is mapped as a circle onto the ideal
plane. The advantage of introducing an ideal sensor plane along with a coordinate system that
is identical with the mirror coordinate system is the direct consideration of lens distortions
within the Taylor model.

An affine transformation maps points from the ideal sensor plane to the real sensor plane. A
translation t transforms the projection center Oc from the image center of the ideal sensor plane
into the origin of an additional, virtual sensor plane E ′ with its coordinates u′, v′ (see Fig-
ure 2.6(b)). Finally, an affine transformation A takes the misalignments of the mirror into
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Figure 2.6: The camera model proposed by Scaramuzza [30]: A scene point P is mapped onto
an ideal, virtual sensor plane E ′′ (a). Its projection on a virtual sensor plane E ′ (b)
is projected onto a real sensor plane (c) using affine transformations.

account and projects the image points from the virtual sensor plane E ′ onto the real sensor
plane E (see Figure 2.6(c)).

The projection of a 3D-scene point into an image point P on the 2D-sensor plane E can be
described as follows.

~P =

[
uP

vP

]
= f(~p) with ~p = λ ·

 xp

yp

zp

 , λ > 0 (2.8)

Eq. 2.8 expresses a relation between vector ~p in world coordinates xP , yP , zP and the camera
coordinates uP and vP . Moreover, a scale factor λ is introduced to determine all 3D-scene
points in world coordinates along the direction of vector ~p. These 3D-points are all projected
onto the same sensor pixel u, v. Since the camera coordinates on the virtual sensor plane E ′′ are
identical with the x, y coordinates of the world coordinates, Eq. 2.8 can be rewritten following
Eq.2.9:

~p =

 x~p

y~p

z~p

 = λ ·

 uP ′′

vP ′′

f(ρ)

 with ρ =
√

u2
P ′′ + v2

P ′′ . (2.9)

Scaramuzza [30] uses a polynomial function f(ρ) to model the mirror characteristic for var-
ious omnidirectional cameras (see Eq. 2.10). This function specifies the world coordinate zP

depending on uP ′′ , vP ′′ and, hence, on the world coordinates xP and yP .

f(ρ) = a0 + a1ρ + a2ρ
2 + ... + aNρN (2.10)

The mirror shape is assumed to be rotationally symmetric and parallel to the ideal sensor plane
E ′′ at p′′ = 0: Therefore, the derivative df

dρ
ρ2
∣∣∣
p′′=0

= 0 at p′′ = 0 must be zero and coefficient
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a1 can be set to zero.

~p =

 xp

yp

zp

 = λ ·

 uP ′′

vP ′′

f(ρ)

 =

 xp

yp

a0 + a2ρ
2 + . . . + aNρN

 (2.11)

where ρ =
√

u2
P ′′ + v2

P ′′ . Variable λ can be set to unity since only the direction of vector ~p is
of interest. As mentioned above, an affine transformation is proposed to map an image point
P ′′ from the ideal sensor plane E ′′ onto the real sensor plane E. Following Eq. 2.12, the virtual
sensor plane E ′ results from the real sensor plane E using an affine transformation.

~P ′ =

[
uP ′

vP ′

]
= A · ~P with A =

[
c d
d 1

]
and ~P =

[
uP

vP

]
(2.12)

The ideal sensor plane E ′′ results from a translation of the virtual sensor plane E ′ into the image
center and into the projection center of the mirror so that both coordinate systems are coincident
(see Eq. 2.13).

~P ′′ =

[
uP ′′

vP ′′

]
= ~P ′ + ~t with ~t =

[
ucenter

vcenter

]
(2.13)

The projection of a 3D-scene point P on the real sensor plane E to the corresponding point P ′′

on the virtual sensor plane E ′′ is presented in Eq. 2.14.

~P ′′ = A ·
[

uP

vP

]
+ ~t with A =

[
c d
d 1

]
and ~t =

[
ucenter

vcenter

]
(2.14)

2.3 Calibration

In the last section, the camera model used in this thesis was introduced. The camera model
is required to transform original images into panoramic images and is a prerequisite for ex-
tracting metric information from objects in panoramic images. The parameters for the camera
model, in particular the coefficients of the mirror function f and the parameters of the affine
transformation have to be determined during camera calibration. During the calibration proce-
dure, a planar chessboard pattern – with known geometry – is shown at several positions and
orientations and calibration images are captured. These calibration images serve as an input to
the calibration procedure to determine the camera parameters. In actual calibration procedures,
chessboard corners have to be selected manually for each calibration image. Manual selection
of chessboard corners is very time-consuming and may lead to inaccuracies in the calibration
results. For these reasons, automatic chessboard corner extraction is highly desirable both to
improve the calibration results (see Section 2.6.1) and to automatically perform calibration for
omnidirectional cameras in the automotive domain. In the next section, an algorithm is pro-
posed to extract chessboard corners in calibration images captured by omnidirectional cameras.
Thereafter, an efficient calibration algorithm to determine the camera parameters proposed by
Scaramuzza is presented in Section 2.3.2.
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Figure 2.7: Block diagram of the chessboard corner extraction algorithm.

2.3.1 Automatic chessboard corner extraction

Figure 2.7 provides a high-level overview of the proposed chessboard corner extraction proce-
dure. The locations of chessboard corners in calibration images are extracted during calibration
and function as basis for estimating the camera parameters. Similarly to camera calibration for
perspective cameras, the order of the extracted chessboard corners must be identical for each
calibration image. Markers are used to guarantee an identical corner order (see Figure 2.8) for
all calibration images. Commonly used chessboard patterns, which have one modified border,
are not suitable for omnidirectional cameras due to ambiguities in determining the corner order.
In other words, the orientation of the calibration pattern seems to be identical in Figure 2.8(b)
and Figure 2.8(c), but the chessboard in Figure 2.8(c) has a different orientation compared to
the chessboard presented in Figure 2.8(b).

Image preprocessing

To enable camera calibration for a wide range of applications, it is highly desirable to record
calibration images under different illumination conditions. This may lead to perfectly illumi-
nated calibration images, but also to calibration images captured under very bright or very dark
illumination conditions. However, standard chessboard corner extraction algorithms are tuned
to perfectly extracting chessboard corners under dedicated illumination conditions. Different il-
lumination conditions or illumination changes in calibration images may lead those algorithms
to fail. Therefore, image preprocessing is necessary to reduce the influence of illumination for
a large number of scenarios. Experiments demonstrated that best chessboard detection results
are obtained for calibration images whose mean intensity over all image pixels is located within
an intensity range between 50 and 90. For this reason, the first step in the calibration procedure
is to adjust the brightness of calibration images to a mean intensity range between 50 and 90.

In literature, gamma correction [46] is feasible to adjust the brightness of input images in order
to adjust several input images to the same intensity space. Gamma correction is a nonlinear
operation and is used to code and decode luminance values in video or image systems. In its
simplest case, it is a point operation to adjust the brightness of different input images to the
same intensity space. Eq. 2.15 describes the transformation function.

Iout = f(Iin, γ) =

(
Iin

Imax

)γ

· Imax (2.15)

Here, Iin represents the intensity of an image pixel and Imax represents the maximum intensity
over all image pixels. The brightness of an image is estimated by computing the average of all
intensity values over all image pixels. Thereafter, an adaptation algorithm checks whether the
average is located in the optimum range: If not, γ is automatically modified so that the average
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(a) (b) (c)

Figure 2.8: Calibration pattern proposed for camera calibration (a): Commonly used calibra-
tion pattern with one modified border cannot be used due to ambiguities in their
orientation (b,c).

of all intensity values is located within the optimal range. Beginning at unity, the algorithm
modifies the brightness by increasing γ (for bright images) or decreasing γ (for dark images)
step by step.

Adapting the brightness is the first stage for image preprocessing. However, the contrast of
some images may still be poor and may lead to difficulties in extracting the region containing
the chessboard pattern. For this reason, contrast enhancement is performed as a next stage
to increase the robustness of chessboard region extraction. Contrast enhancement is realized
with a histogram equalization algorithm. Histogram equalization arranges pixel values located
within a small range in a histogram (see Figure 2.9(a)) so that the complete range of intensities
is used (see Figure 2.9(b)). Therefore, the probability density function (p.d.f.) (see Eq. 2.17)
and its corresponding cumulative distribution function (c.d.f) are computed as a first step.

pI(i) =
ni

n
, 0 ≤ i < N (2.16)

PI(i) =
i∑

j=0

pI(i), 0 ≤ i < N with
i∑

pI(i) = 1 (2.17)

Histogram equalization is performed by defining a transformation Iout = T (Iin) to linearize the
non-linear cumulative distribution function (see Figure 2.9(a)) over the whole image histogram
(see Figure 2.9(b)). This enhances the contrast in calibration images and leads to a more robust
extraction of chessboard regions in calibration images.

Detection of chessboard regions

The first stage for chessboard corner extraction is in finding the region in which the chessboard
pattern might be located. The rectangular chessboard patterns help to determine such regions,
but calibration images may also contain rectangular objects from the surroundings that may
be wrongly classified as true chessboard regions. For this reason, determining the region that
contains rectangles and distinguishing whether the region belongs to the calibration pattern
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Figure 2.9: Histogram of calibration images after brightness adaptation (a). Enhancing the con-
trast in calibration images using histogram equalization leads to a better extraction
of chessboard pattern in calibration images (b).

or to background is important for robust chessboard corner detection. A common way for
extracting chessboard patterns is to extract image regions with high contrast. Such regions could
be determined using static or dynamic thresholds. However, static or dynamic thresholding over
the whole image may lead to wrong binarization results due to variously illuminated regions.
Subdividing the calibration images into regions of interest and thresholding each region using
certain threshold values would help to better extract the chessboard in calibration images. For
this reason, the first step of chessboard corner detection is to find regions of interest in which
the calibration pattern may be located.

The region of interest, which contains the chessboard, in a calibration image (see Figure 2.10(a))
is initially determined using a Canny edge detector [47] (see Figure 2.10(b)). Morphological
operations reduce the large number of potential regions to a few (see Figure 2.10(c)). The
region that may contain the calibration pattern is assumed to be the region with the largest
number of rectangles. Figure 2.10(d) illustrates the final extraction result of rectangles from
the calibration pattern. Despite image distortion, these rectangles are similar to squares and
could be distinguished from other rectangles related to the background as follows: A metric
m1 is introduced to distinguish between squares from the calibration pattern or from rectangles
related to the environment. Following Eq. 2.18, a rectangle belongs to the calibration pattern
if m1 is less than a chosen threshold thmetric. Hereby, s represents the size of an extracted
rectangle and l represents its boundary.

m1 =
( s

s∗

)2

with s∗ =

(
l

4

)2

(2.18)

Detected rectangles that are similar to squares result in small values of metric m1 whereas other
rectangles result in high values for m1. For this reason, metric m1 can distinguish between
rectangles from a calibration pattern and from rectangles related to the environment.

Figure 2.10(d) illustrates the successful detection of chessboard squares, but a large number
of squares induced by the environment is still detected. Figure 2.11(a) shows an example of a
highly structured environment that contains many rectangular objects. The resulting detection
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(a) (b) (c) (d)

Figure 2.10: Calibration image (a) and detected edges (b). Potential chessboard regions (c) and
validated chessboard squares along with noise (d).

(a) (b) (c) (d)

Figure 2.11: Difficult extraction of chessboard squares: The calibration image contains many
rectangular objects besides the chessboard pattern (a) and the resulting detection
result (b). Elimination of wrongly classified chessboard squares using the metric
m1 (c) and the valid chessboard region after the refinement stage using the metric
m2 (d).

of rectangles within a complex region is illustrated in Figure 2.11(b). In such regions, extraction
of a valid chessboard region is very difficult: Therefore, a similarity m2 is introduced that
explicitly considers the similarity of sizes of chessboard squares within a certain neighborhood
(see Eq. 2.19). In other words, the size of a detected square serves as a reference size and
is compared with the sizes of neighboring squares. Squares that have a similar size within a
certain neighborhood must relate to the chessboard pattern and are denoted as valid chessboard
squares.

m2 =
|S1 − S2|

min(S1, S2)
(2.19)

Here, S1 and S2 represent the sizes of detected rectangles. Again, squares in a certain neighbor-
hood of an extracted square are assumed to have a similar size if they belong to the calibration
pattern. Small values for m2 indicate a high similarity, whereas high variances are indicated by
high values. Thereafter, the chessboard region can be determined by finding the region with the
largest number of valid rectangles. Figure 2.11(c) illustrates the detection result after region re-
finement using the similarity metric m2. Figure 2.11(d) shows the detected region that contains
the chessboard pattern.

However, such extracted rectangles in a chessboard region are not suitable for further image pro-
cessing since some chessboard squares might not be detected. In particular, very small squares
in low resolution images close to the image center are easily deleted during the chessboard ex-
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Figure 2.12: Block diagram of homomorphic high-pass filtering.

tracting process (see Figure 2.10(d)). Thus, extracted chessboard regions serve as an input for
further processing stages only. Only the region that potentially contains the chessboard pattern
in the calibration image is of interest for further processing stages. The remaining part of a
calibration image is masked out.

As mentioned above, image binarization is suitable for separating the chessboard from back-
ground. Binarization yields good extracting results if there is a homogeneous illumination over
the entire calibration pattern. But this is difficult to realize in common calibration environ-
ments. Figure 2.13(a) illustrates an inhomogeneous illuminated chessboard and the result after
binarization (see Figure 2.13(b)). It can be seen that the chessboard borders cannot be clearly
separated from the rest of the calibration pattern. Homomorphic filtering [48, 49] of the input
image overcomes this limitation by improving the image quality in order to facilitate object
extraction. For this purpose, variations in illuminations are assumed to be multiplicative noise
in the intensity domain and can, hence, be reduced by filtering in the logarithmic domain. The
transformation of an image from the intensity domain into the logarithmic domain and a trans-
formation of the result into the frequency domain using the Discrete Fourier Transformation
(DFT, =) allows to make multiplicative image components such as noise additive. Conse-
quently, image components can be easily separated in the frequency domain (see Eq. 2.21).
Here, l(x, y) and h(x, y) represent the high- and the low-frequency parts of a calibration image.
A general overview of the linear filter process is illustrated in Figure 2.12.

f(x, y) = l(x, y) · h(x, y)

=(ln(f(x, y))) = =(ln(l(x, y))) + =(ln(h(x, y))) (2.20)
F (u, v) = L(u, v) + H(u, v)

Low-frequency components in the frequency domain represent the variations of illuminations
on the chessboard. To achieve a more homogeneous illumination on chessboard patterns, high
frequencies are amplified and low frequencies are damped. Hence, high-pass filtering can
be used to suppress low frequencies and to amplify high frequencies in logarithmic images.
Eq. 2.21 presents a modified high-pass filter where ρ represents the limiting frequency and
α the filter gain. A preservation factor β is introduced to avoid the suppression of very low
frequencies. Very low frequencies represent the homogeneous image regions in calibration pat-
terns such as the white and black regions and must, hence, be preserved.

H(f) =

{
1, for f ≤ β

1− α exp
(
− |f |2

ρ2

)
, otherwise

(2.21)

Figure 2.13(c) shows the extracted chessboard after homomorphic high-pass filtering. It can be
seen that the white area within the calibration pattern is more homogeneous after homomorphic
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(a) (b) (c) (d)

Figure 2.13: Inhomogeneously illuminated chessboard pattern (a) and its binarization result (b).
A more homogeneous chessboard region after homomorphic filtering (c) and the
binary image after binarization (d).

filtering than the white region within the original image. This leads to a better binarization result
(see Figure 2.13(d)). The results obtained can now be used for further image processing such as
marker detection or chessboard corner extraction. Further morphologic operations allow a final
detection of the chessboard regions.

Marker extraction

Marker extraction is the next stage for an automatic detection of chessboard corners. Markers
are required to obtain a unique order of chessboard corners in calibration images. Although a
detection of the black marker seems to be very easy, the proposed algorithm starts with detecting
the white one. Therefore, the edge image obtained during chessboard region extraction (see
Figure 2.14(a)) serves as an input for extracting the inner image parts of the calibration pattern
and the white marker (see Figure 2.14(b)). As shown in Figure 2.14(c), the white marker can be
separated after removing the inner chessboard regions. However, some images exist where the
inner regions cannot be removed (see Figure 2.14(d)). To overcome this limitation, a circularity
metric m3 is proposed to determine circular objects by using of the object size s and the object
boundary l (see Equation 2.22).

m3 =
( s

s∗

)2

with s∗ =
l2

4π
(2.22)

Circular objects result in small values, whereas rectangular objects result in large values for m3.
In this manner, the algorithm identifies circular markers and distinguishes them from rectangular
objects by the circularity metric m3. Once the white marker is found in a calibration image, the
black marker is extracted within a region of interest close to the white marker. Morphologic
operations together with the metric m3 are used to distinguish between chessboard squares and
the black marker.

Corner detection and refinement

In this section, a method is proposed to extract chessboard corners, which are required for cam-
era calibration. A preprocessing routine is introduced that extracts grid points on the chessboard
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(a) (b) (c) (d)

Figure 2.14: Edge image used for marker extraction (a), inner region of the chessboard pat-
tern (b) and extraction of the white marker (c). Bad detection result due to many
extracted chessboard squares (d).

(a) (b) (c) (d)

Figure 2.15: Grid points detected on a chessboard pattern (a) and the region of interest to de-
termine potential chessboard corners (b). Extracted chessboard corners (c) and the
final detection result verified by a Harris corner detector (d).

pattern on which chessboard corner extraction is based. This routine increases the performance
of the extraction algorithm by predicting the regions in which chessboard corners might be lo-
cated. The edge image and the binary chessboard image serve as input for the preprocessing
routine. The markers are removed and the intersection points of the chessboard pattern are sep-
arately extracted both for the edge image and for the binary image. The results of both images
are used to determine the grid points on the calibration pattern and to close potential gaps within
the grid. A mask is then generated whose dimension is limited by the center points of the outer
chessboard squares (see Figure 2.15(b)). This mask reduces the number of potential grid points
that have to be validated during the corner extracting process. Figure 2.15(c) illustrates potential
grid points on which chessboard corners might be located.

The extracted grid points indicate the potential location of the chessboard corners. As shown
in Figure 2.15(c), the grid points are not exactly located on the intersection points of the chess-
board grid. For this reason, a Harris-Corner detector [50] is required to determine the final
corner positions and to refine previous detection results.

The Harris corner detector is a powerful corner detector and is robust against illumination
changes, image size and image orientation. The main idea of this detector is to find corners
based on eigenvalues of a correlation matrix. This allows a robust detection of weak corners
that appear ofte in omnidirectional calibration images due to image distortion. Figure 2.15(d)
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illustrates the final detection result of potential chessboard corners obtained by the Harris cor-
ner detector. Although most of the grid corners are identified as valid intersection points, some
points located somewhere else are also initially classified as valid chessboard corners. These
points can be identified and can be removed using correlation-based template matching.

Template matching is often used in image processing to retrieve small image regions from a
whole image. Matching is performed with a convolution mask, which is also called the refer-
ence template, and can be easily performed on gray-scaled or on binary images. The convo-
lution mask is specially tailored to specific features that have to be retrieved within an image.
Figure 2.17 illustrates the chosen feature mask both to identify valid points located on chess-
board corners (see Figure 2.16(b), template 1) and to detect points located on the border of a
chessboard square (see Figure 2.16(c), template 2).

Following Eq. 2.23, the zero means normalized cross correlation function (ZNCC) is used to
determine the convolution output c(s, t). Here, f(x, y) describes a reference template with size
N × N and its mean gray value f̄ . g(x, y) describes the corresponding search template with
size N ×N and its mean gray value ḡ.

c(s, t) =

N∑
x=1

N∑
y=1

[
f(x, y)− f̄N×N

]
[g(x− s, y − t)− ḡN×N ]√

N∑
x=1

N∑
y=1

[
f(x, y)− f̄N×N

]2 N∑
x=1

N∑
y=1

[g(x− s, y − t)− ḡN×N ]2
(2.23)

The reference template is moved over the whole image, and the convolution output will be the
highest at image positions on which the reference template best matches the search template.
Figure 2.16(a) illustrates a typical corner detection result after chessboard corner extraction.
There is one wrongly determined chessboard corner located on the border of a chessboard
square. This wrongly determined chessboard corner can be detected by template matching.
Figure 2.17(a) illustrates the convolution result for templates 1 and 2 performed on a valid
chessboard corner. Figure 2.17(b) illustrates the correlation result for a wrongly detected chess-
board corner located at the border of a chessboard square. Template 1 best matches positions
of chessboard corners, whereas template 2 best matches on positions that contain chessboard
square borders.

However, testing whether each potential corner position belongs to a valid chessboard corner
is very time-consuming. Testing can be sped up by determining a likely hood of a point being
located on a chessboard corner or on a chessboard border. This probability is determined by
calculating the distances between a corner point and the center points of the closest neighboring
squares. For a valid corner point, this distance is assumed to be approximately constant. The
distances of points located at one of the square borders vary and are candidates that have to be
checked for belonging to chessboard corners or to square borders.

Corner positioning
The order of extracted chessboard corners must be identical in each chessboard image for the
calibration algorithm. The extracted markers help to guarantee an identical corner order in each
calibration image and to determine the first corner point on the chessboard.
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(a) (b) Template 1 (c) Template 2

Figure 2.16: Identified chessboard corners in a calibration image (a). Reference templates to
identify points located at corners (template 1) (b) and points located at borders of
chessboard squares (template 2) (c).
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Figure 2.17: Convolution output for points located at corners using template 1 (a) and for points
located at borders using template 2 (b).

In a first step, the center of the two markers, the straight line T connecting these centers and the
central point C bisecting this line are extracted (see Figure 2.18(a)). The first chessboard cor-
ner is the point with the shortest distance to the central point C and the one whose connecting
line with C is approximately perpendicular to T . To obtain this point, the three closest chess-
board corners (p1, p2, p3, see Figure 2.18(a)) to the central point C are determined following
Eq. 2.24. In this case, d represents the distance of the central point [xcentral ycentral]

T to one of
the closest chessboard corners p1, p2, p3 with their image coordinates [x y]T . The coordinates
[xbl ybl]

T and [xwh ywh]
T represent the centers of the black and the white marker.

d =
√

(y − ycentral)2 + (x− xcentral)2 with

ycentral =
1

2
(ybl + ywh) and xcentral =

1

2
(xbl + xwh) (2.24)

The point with the shortest distance d to C may be the potential first chessboard point. To
increase the robustness of the detection, angle θ is determined for these points as follows (see
Eq. 2.25).
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(a) (b) (c) (d)

Figure 2.18: Determination of central-point C located between the two markers and the first
corner point (a), the second corner point (b) and the third corner point (c). The
resulting corner order serves as input for camera calibration (d).

θ = arctan(
|m1 −m2|
1 + m1m2

) with m1 =
ywh − ybl

xwh − xbl

, m2 =
y − ycentral

x− xcentral

(2.25)

As shown in Figure 2.18(a), chessboard corner p2 has the shortest distance to C and is located
on the straight line P2 that is approximately perpendicular to T . For this reason, this corner
must be the first point on the calibration pattern. A second point can then be identified using
the first point and the connecting line V connecting the first point with the central point C (see
Figure 2.18(b)). Similarly to the previous stage, the three closest grid points q1 q2 q3 to the first
points are extracted and the segments Q1 Q2 Q3 connecting these points with the first point
are determined. The second point is the one whose segment is approximately perpendicular to
V . Therefore, the cutting angle θ between this segment and V is computed following Eq. 2.25.
The detection result illustrates Figure 2.18(c).

After detecting the second grid point, the third point is again the one with the shortest distance
to the second grid point and the one whose segment with the second grid point leads to a
small cutting angle θ. This process is repeated until all grid-points have been determined.
Figure 2.18(d) illustrates the complete detection result and the resulting corner order.

2.3.2 Camera calibration

The next step in the calibration procedure is to estimate the parameters a0, a2 · · · , an and the
affine parameters A, t to obtain the omnidirectional camera model. The determination of these
parameters is based on the image positions of the extracted chessboard corners and is called
camera calibration. This section briefly describes the calibration procedure that has been pro-
posed by Scaramuzza et al. [26, 27] and that enables an accurate determination of the camera
parameters. The calibration process is separated into two stages. At the first stage, the co-
efficients a0, a2 · · · , an – also called intrinsic parameters – are estimated assuming an ideal
projection of the calibration corners onto the ideal sensor plane (see Section 2.2.4). This is
realized by setting the affine transformation matrix A to the identity matrix and the translation
to zero (t = 0). In a second stage, the affine transformation parameters A, t are determined

28



2.3 Calibration

x

y

z

0

u’’

v’’

0

X

YR,T

X

M
m .

O

Figure 2.19: Coordinate system of a calibration pattern and its relation to the camera system.

and the results obtained are refined using nonlinear optimization. Regarding Figure 2.6(a) in
Section 2.2.4, (u′′, v′′) are the pixel coordinates of a chessboard corner point P′′ and ρ = ‖u′′‖
is assumed to be the length of a vector to point P ′′.

In a first step, the parameters a0, a2, ..., an are estimated. For this purpose, a planar chessboard
pattern – with known geometry – is shown at several positions and orientations during the cali-
bration process. The chessboard corners are extracted for each pose and their positions in image
coordinates are determined. Each chessboard in a calibration image is related to the camera co-
ordinate system by a rotation matrix R and by a translation T (see Figure 2.19). Variable Ii

is denoted as an observed calibration image where M i
j = [X i

j Y i
j Zi

j]
T are the 3D-coordinates

of the chessboard corners within the chessboard pattern coordinate system O. Furthermore, let
m = [ui

j vi
j] be the corresponding pixel coordinates on the ideal sensor plane. Superscript i de-

notes the observed calibration image and subscript j indicates the j-th chessboard corner on the
i-th calibration image. Due to planar chessboard patterns in calibration images, the coordinates
Zi

j of chessboard corners can be set to zero. By using the camera model (see Section 2.2.4) and
by stacking the image coordinates of the chessboard corners into Eq. 2.11.

λi
j · pi

j = λi
j ·

 ui
j

vi
j

a0 + a2ρ
i
j + · · ·+ aNρi

j
N

 = Pi ·Xi
j

=
[
ri
1 ri

2 ri
3 Ti

]
·


X i

j

Y i
j

0
1

 =
[
ri
1 ri

2 Ti
]
·

 X i
j

Y i
j

1

 (2.26)

where ri
1, ri

2, ri
3 are the column vectors of the rotation matrix Ri. Furthermore, Scaramuzza

et al. [26, 27] make Eq. 2.26 independent from the scale-factor λi
j by multiplying both sides of
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Eq. 2.26 vectorially with pi
j as follows:

λi
j · pi

j × pi
j = pi

j ×
[
ri
1 ri

2 Ti
]
·

 X i
j

Y i
j

1

 = 0

 ui
j

vi
j

a0 + a2ρ
i
j + · · ·+ aNρi

j
N

× [ri
1 ri

2 Ti
]
·

 X i
j

Y i
j

1

 = 0 (2.27)

From that point on, Scaramuzza et al. [26, 27] generate three homogeneous equations Eq. 2.29,
Eq. 2.30 and Eq. 2.30 with g(ρj) = a0 + a2ρ

2
j + · · · + aNρN

j . The world coordinates Xj, Yj

of the chessboard corners are obtained using the known length of each chessboard square in a
calibration pattern and the corresponding image coordinates uj, vj are obtained from the corner
extractor (see Section 2.3.1).

vj(r31Xj + r32Yj + t3)− g(ρj)(r21Xj + r22Yj + t2) = 0 (2.28)
g(ρj)(r11Xj + r12Yj + t1)− uj(r31Xj + r32Yj + t3) = 0 (2.29)

uj(r21Xj + r22Yj + t2)− vj(r11Xj + r12Yj + t1) = 0 (2.30)

Thereafter, the unknown extrinsic parameters r11, r12, r21, r22, t1, t2 are stacked into a
vector H (see Eq. 2.33). The linear solution of Eq. 2.32 and, hence, a solution for the vector H
is computed by minimizing the least-squares criterion min|M · H|2 using the Singular Value
Decomposition (SVD). Since vectors r1 and r2 are orthonormal, the missing unknown entries
r31 and r32 and the scale factor λi

j can be computed together in one step.

M ·H = 0 (2.31)
with H = [r11 r12 r21 r22 t1 t2]

T and (2.32)

M =

 −v1X1 −v1Y1 u1X1 u1Y1 −v1 u1
...

...
...

...
...

...
−vLXL −vLYL uLXL uLYL −vL uL

 (2.33)

After that, Eq. 2.29 and Eq. 2.30 are reorganized into a matrix vector representation to obtain
a set of linear equations. The intrinsic parameters a0, a1, ..., an represent the geometry of the
mirror shape whereas the missing extrinsic parameter t3 is estimated by the linear least-squares
solution of Eq. 2.34 for an arbitrary polynomial degree N .



A1
j A1

jρ
1
j
2 · · · A1

jρ
1
j
N −v1

j 0 · · · 0
C1

j C1
j ρ1

j
2 · · · C1

j ρ1
j
N −u1

j 0 · · · 0
...

...
...

...
...

...
...

...
AK

j AK
j ρK

j
2 · · · AK

j ρK
j

N 0 · · · 0 −vK
j

CK
j CK

j ρK
j

2 · · · CK
j ρK

j
N 0 · · · 0 −uK

j


·



a0

a2
...

aN

t13
t23
...

tK3


=


B1

j

D1
j

...
BK

j

DK
j

 (2.34)
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where

Ai
j = ri

21X
i
j + ri

22Y
i
j + ti2

Bi
j = vi

j(r
i
31X

i
j + ri

32Y
i
j )

Ci
j = ri

11X
i
j + ri

12Y
i
j + ti1

Di
j = ui

j(r
i
31X

i
j + ri

32Y
i
j )

After the initial estimation of intrinsic and extrinsic parameters, Scaramuzza et al. proposed
a two-stage linear refinement algorithm to optimize the initial calibration results. In a first
stage, the extrinsic parameters R and T are recomputed by solving Eqs. 2.29, 2.30, 2.30 using
the obtained intrinsic parameters a0, ..., an. Secondly, the intrinsic parameters are refined by
stacking the computed extrinsic parameters into Eqs. 2.29, 2.30. The intrinsic parameters are
then recomputed by solving the linear equation system.

The center of distortion of the camera is estimated in another step. The distortion center is
initially assumed to be coincident with the image center on the virtual sensor plane. Scara-
muzza uses an iterative, exhaustive search process that performs many calibration trials for a
fixed number of potential location center candidates that are uniformly spread over a certain
image region in calibration images. For each trial, the reprojections – viz. the potential posi-
tions of chessboard corners in calibration images – are recomputed with the camera parameters
determined during the calibration procedure. The reprojection result is compared with the true
positions of the chessboard corners in the calibration images and a reprojection error for each
trial is determined. This reprojection error has a global minimum when the estimated position
best matches the real distortion center. The point with the smallest reprojection error is identi-
fied as the potential distortion center. New candidate locations in the region close to this point
are specified and the process is repeated until the global minimum has been found.

Up to this point, the affine transformation matrix A was set to the identity matrix I. This
assumption can be made since the values of the affine matrix are very similar to the values
of the identity matrix. So far, the calibration process proposed by Scaramuzza estimates the
calibration parameters without modifying the affine matrix A. The values of the matrix A
can be determined in a second step by using a non-linear refinement stage that is based on a
maximum likelihood estimation. Therefore, the following mathematical expression functional
is minimized

E =
K∑

i=1

L∑
j=1

|ui
j − ũ(Ri, T i, A, t, a0, ...aN , X i

j|2 (2.35)

where ui
j represents the coordinates of extracted chessboard corners and ũ represents the repro-

jections of scene points X i
j on the i-th chessboard pattern. A Levenberg-Marquardt [51, 52]

algorithm is used to minimize this function, whereas the previously determined calibration pa-
rameters serve as an initial guess for minimization of Eq. 2.35. After minimization, the camera-
parameters are estimated and can be used for image rectification and other applications.
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2.4 Image rectification

Original images captured from omnidirectional cameras are distorted, not simply interpretable
and are not easy to apply for normal image processing routines. For example, straight bor-
ders of rectangular objects or quadric surfaces might be represented as curves or as rhombuses
in original images. For this reason, conventional image processing algorithms like Hough-
transformation are no longer suitable. Methods and procedures exist that process original im-
ages of uncalibrated omnidirectional cameras, but no useful mathematical relation between real
object properties like size and width can be found. Hence, there is a need to transform orig-
inal images into panoramic images for conventional image processing routines. In this sec-
tion, an image rectification algorithm is proposed to efficiently transform original images into
panoramic images. First, different projections are presented that are capable of transforming
original images into panoramic images. Based on the projection parameters and on the (cal-
ibrated) camera model (see Section 2.2.4), the algorithm computes the target projection area
in 3D-world coordinates. Thereafter, corresponding 2D-image coordinates of the projection
area on the sensor plane are determined and intensity values from the 2D-image coordinates
are mapped onto the panoramic image using bicubic interpolation. Figure 2.20 provides a high
level overview of the image rectification procedure.

2.4.1 Projections used for image rectification

In the image processing domain, two common techniques exist to transform images from one
image space into another. These methods are called Source-to-Target Mapping and Target-to-
Source Mapping and are suitable for geometric and perspective image transformations [53].
They also allow transforming original images, which are captured by omnidirectional cameras,
into rectified, panoramic images for manifold applications such as surveillance, person extrac-
tion and ambiance monitoring.

Source-to-target mapping

Source-to-Target Mapping is a method to map pixel from a source image I onto a target image
I ′. This technique provides a function R to directly determine the pixel positions (m′, n′) in a
target image I ′ from the pixel positions (u, v) in a source image I (see Eq. 2.36).

(m′, n′) = R(u, v) (2.36)

Such computed pixel positions (m′, n′) do not necessarily have to be coincident with the matrix
points of target images. In other words, the positions may differ from the image matrix and may
be located between four matrix points (see Figure 2.21(a)). Thus, the difficulty of Source-to-
Target Mapping is to determine the pixel position in a target image I ′ where the algorithm maps
the intensity I(u, v). Furthermore, intensity information of many pixel positions (m′, n′)
in target images can not be directly determined from the pixel positions (u, v) of an input
image. Due to stretching effects caused by image rectification, the obtained image may contain
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Figure 2.20: This diagram illustrates the proposed rectification process: The projection area is
computed based on the calibration data and is stored in a look up table. The look
up table is used to transform original images into rectified panoramic images [14].

vacant pixel positions where intensity information is not available (see Figure 2.22(a)). This is
particularly the case for pixels in original images located close to the image center. Interpolation
methods as proposed in [54, 55, 56] can be used to overcome this problem. By contrast, intensity
values of pixels that are located at the boundary of original images may be mapped onto the
same pixel position on target images.

Target-to-source mapping

A different technique is the Target-to-Source Mapping. The main idea of Target-to-Source
Mapping is to provide an inverse function R′ to estimate the position of image pixels (u′, v′) in
source images I based on the matrix positions (m, n) in target images I ′ (see Eq. 2.37).

(u′, v′) = R′(m, n) (2.37)

In contrast to Source-to-Target Mapping, the main advantage of Target-to-Source Mapping is
determining a corresponding pixel position (u′, v′) for each target pixel position (m, n). This
overcomes the problem of vacant pixel positions in target images as each pixel in a rectified
image is assigned to an intensity value from the original image (see Figure 2.22(b)). However,
such computed pixel positions (u′, v′) are also not coincident with the grid points of source
images (see Figure 2.21(a)), but the required intensity values I(u′, v′) for a pixel (m, n) on a
target image I can be easily estimated using interpolation methods.

Cylindric projection

Cylindric projection is commonly used in robotics and is able to transform original images into
panoramic images. Figure 2.23(a) illustrates a 3D-view of the cylindrical projection area that
may relate to a cylindric cutout or to an entire cylinder. The size of the target projection area
may be chosen by the following parameters. The parameters are the distance d of the projection
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(a) Source-to-Target Mapping (b) Target-to-Source Mapping

Figure 2.21: Projection methods that are commonly used to transform images from one image
space into another [53].

(a) (b)

Figure 2.22: This figure illustrates rectified images using source-to-target (a) and target-to-
source (b) mapping without interpolation to fill vacant pixel positions within target
images.

area to the camera projection center, the rotation width α and the rotation offset αoffset, and
the height of the projection area defined by the parameters Ztop and Zbottom (see Figure 2.23(b)
and Figure 2.23(c)). The cylindric coordinates (αP , ZP )T of each image point PF in the target
area at position [m, n]T are calculated with the projection parameters and the target image size
(M, N)T as follows:

~PF m,n =

 d
αP

ZP


m,n

=

 d(
αoffset − α

2

)
+
(

α
M
·m
)

Ztop −
(

Ztop−Zbottom

N
· n
)
 (2.38)

The cylindric coordinates are transformed into Cartesian coordinates assuming a clockwise ro-
tation αP beginning at the y - axis (see Eq. 2.39).

~PF =

 XP

YP

ZP

 =

 d · sin(αP )
d · cos(αP )

ZP

 (2.39)
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Figure 2.23: Different views of the projection area for cylindric projection. (a): 3D-view of the
projection area and its parameters (b,c) [14].

Conic projection

The conic projection is an alternative to the cylindric projection and is also able to map intensity
values of pixels from original images onto a conic projection area (see Figure 2.24(a)). The
projection area relates to an entire conic or a conic cutout. Its parameters are the distances
from the projection center to the upper boundary dtop and to the lower boundary dbottom of the
target area, rotation α and the rotation offset αoffset, and the projection height that is defined
by Ztop and Zbottom (see Figure 2.24(b) and Figure 2.24(c)). Following Eq. 2.40, the cylindric
coordinates (αP , ZP )T of an image point PF in the target area at position [m, n]T is computed
using the projection parameters and the size of the target image (M, N)T as a first step.

~PF m,n =

 d
αP

ZP


m,n

=


dtop −

(
dtop−dbottom

N
· n
)(

αoffset − α
2

)
+
(

α
M
·m
)

Ztop −
(

Ztop−Zbottom

N
· n
)
 (2.40)

Similarly to cylindric projection, the cylindric coordinates is transformed into Cartesian coor-
dinates assuming a clockwise rotation αP beginning at the y - axis. Eq. 2.41 describes this
transformation.

~PF =

 XP

YP

ZP

 =

 d · sin(αP )
d · cos(αP )

ZP

 (2.41)

Spherical projection

A further projection is the spherical projection and is also commonly used in robotics. The
spherical projection maps intensity values of pixels from original images onto a spheric pro-
jection area used for the target image. Figure 2.25(a) illustrates a 3D-view of the cylindrical
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Figure 2.24: Different views of the projection area for the conic projection. The 3D-view of the
projection area (a) and its parameters (b,c) [14].

projection area. The size of the projection area can be defined using the following transforma-
tion parameters. These parameters are the elevation width β, elevation offset βoffset as well as
the rotation width α and the rotation offset αoffset (see Figure 2.25(b) and Figure 2.25(c)). The
center of the projection area is assumed to be coincident with the projection center of the mirror.
Consequently, each image point P on the projection plane has the same solid angle regardless
of its distance to the projection center. Each image point in the projection area is also projected
onto the same image point on the camera sensor for each distance d. Hence, the distance r
between the projection area and the projection center is set to unity for all image points P on
the target area.

The spherical coordinates (αP , ZP )T of an image point P in the projection area at position
[m, n]T within the target image are computed based on the projection parameters and on the
target image size (M, N)T (see Eq. 2.42).

~PF m,n =

 r
αP

βP


m,n

=

 r(
αoffset − α

2

)
+
(

α
M
·m
)(

βoffset + β
2

)
−
(

β
N
· n
)
 with r = 1 (2.42)

Finally, the spherical coordinates are transformed into Cartesian coordinates assuming a clock-
wise rotation αP beginning at the y - axis and an anti-clockwise elevation βP beginning at the
x - axis (see Eq. 2.43).

~PF =

 XP

YP

ZP

 =

 1 · sin(αP ) · cos(βP )
1 · cos(αP ) · cos(βP )

1 · sin(βP )

 (2.43)

Plane projection

The presented cylindric, conic and spherical projections can generate panoramic images that
have a horizontal view up to 360◦. Contrary to the these projections, the plane projection gener-
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Figure 2.25: Different views of the spherical projection area. The 3D-view of the projection
area (a) and its parameters (b,c) [14].

ates images as if taken directly by a perspective camera. In other words, the plane projection is
suitable for treating an omnidirectional camera as a perspective camera and may be interesting
for applications that use only a limited field of view of the camera. Plane projection maps pixels
from original images onto a rectangular image plane. Figure 2.26(a) illustrates a 3D-view of
the plane target projection area. Parameters for this projection are the elevation offset βoffset,
the rotation offset αoffset, the distances d between the projection area and projection center and
the size of the target plane b and h (see Figure 2.26(b) and Figure 2.26(c)).

Following Eq. 2.44, the distance of an image point PF in the target image at position [m, n]T to
the left border bP and the distance of this point to the lowest border hp of the projection area are
calculated using the size of the target image (M, N)T , the target image width b and the target
image height h. [

bP

hP

]
(m,n)

=

[
b

M
·m

h
N
· n

]
(2.44)

The normalized vector ~F ′
C with its direction towards the image center of the target plane is

computed with the distance between the target area and the projection center, the elevation
βoffset and the rotation αoffset (see Eq. 2.45).

~FC′ =


XFC

d
YFC

d
ZFC

d

 with ~FC =

 XFC

YFC

ZFC

 =

 d · sin(αoffset) · cos(βoffset)
d · cos(αoffset) · cos(βoffset)

d · sin(βoffset)

 (2.45)

After that, another normalized vector ~Fm is generated that is perpendicular to vector ~F ′
C and

whose direction is coincident with the direction of the target image coordinate m (see Eq. 2.46).

~Fn = ~FC′ ×−~Fm with ~Fm =

 YFC′

−XFC′

0

 (2.46)
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Figure 2.26: Different views of the plane projection area. The 3D-view of the projection area
(a) and its parameters (b,c) [14].

The normalized vector ~Fn may now be determined using the cross product ~Fn = ~F ′
C × −~Fm.

Similarly to ~Fm, ~Fn is perpendicular to ~F ′
C and its direction is coincident with the direction

of the target image coordinate n. Finally, the world coordinates of each image point PF on
the target area is computed using the vectors ~Fm, ~Fn, ~FC and the parameters hp and bp (see
Eq. 2.47).

~PF = ~FC + ~Fm · (bp −
b

2
) + ~Fn · (hp −

h

2
) (2.47)

2.4.2 Transformation from world to sensor coordinates

The determination of the projection area and the computation of its image coordinates in 3D-
world coordinates (see Section 2.4.1-2.4.1) is the first step for image rectification. The world
coordinates of each pixel position in the projection area are available and can be transformed
to find their corresponding 2D-sensor coordinates. This transformation is required to map the
intensity values of sensor pixels onto the corresponding pixel positions in the target projection
area.

The transformation from world to sensor coordinates is realized with the camera model pre-
sented in Section 2.2.4. Therefore, the inverse camera model has to be determined and requires
the extrinsic and intrinsic calibration parameters.

~p =

 x~p

y~p

z~p

 =

 x~p

y~p

a0 + a2ρ
2 + . . . + aNρN

 = λ ·

 uP ′′

vP ′′

a0 + a2ρ
2 + . . . + aNρN

 (2.48)

Eq. 2.48 illustrates the inverse camera model (calibration function) for an image point P ′′ on
the target projection area in world-coordinates. Thus, ρ is defined as the length of the vector
~v = [uP ′′ vP ′′ ]T to an image point on the sensor plane with ρ = ||~v|| =

√
u2

P ′′ + v2
P ′′ .

In contrast to the calibration function, the scaling-factor λ, which has been presented in Sec-
tion 2.3.2, is important to determine the inverse camera model. The world coordinates of each
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scene point have to be computed using the scaling factor λ. In other words, λ is the scaling
factor that describes all 3D-points located on a light ray that are projected into the same image
point on the sensor plane. To facilitate the computation, a new scaling factor λ′ is introduced
that combines both λ and ρ to a new scaling factor so that the total length of vector ~p depends
only on λ′ (see Eq. 2.49).

~p =

 x~p

y~p

z~p

 = λ′ ·


uP ′′

ρ
vP ′′

ρ
(a0+a2ρ2+...+aNρN )

ρ

 with
∣∣∣∣[ uP ′′

ρ
vP ′′

ρ

]∣∣∣∣ = 1 and λ′ = λ · ρ (2.49)

Following Eq. 2.49, λ′ represents the length of vector ~p and may be calculated using the X, Y
components for any pixel position on the projection plane (see Eq. 2.50).

λ′ =
√

x2
~p + y2

~p (2.50)

The Z component of vector z~p can now be determined using Eq. 2.49 and Eq. 2.50:

z~p

λ′ ρ = a0 + a2ρ
2 + . . . + aNρN (2.51)

After reorganizing Eq. 2.51, ρ can be computed by solving the n-polynomial function that de-
scribes the characteristic of the mirror shape (see Eq. 2.52).

0 = a0 −
z~p

λ′ ρ + a2ρ
2 + . . . + aNρN (2.52)

This equation is numerically solved and may provide several solutions. Complex and negative
numbers as well as double roots are neglected since ρ represents a real positive length of a
vector ~v on the sensor plane. For this reason, the solution for ρ must be the smallest, real and
positive root and serves as an input to Eq. 2.53 along with the scaling-factor λ′.[

uP ′′

vP ′′

]
=

ρ

λ′ ·
[

x~p

y~p

]
with λ′ =

√
x2

~p + y2
~p (2.53)

Eq. 2.53 represents the inverse camera model of the extrinsic calibration and is used to transform
image points in the projection area with world coordinates into sensor coordinates on the virtual
sensor plane E ′′ (see Section 2.2.4). The extrinsic calibration can be easily inverted following
Eq. 2.54:

~P =

[
uP

vP

]
= A−1 · (P ′′ − ~t) with ~t =

[
ucenter

vcenter

]
and A =

[
c d
d 1

]
(2.54)

Using the inverse extrinsic calibration (see Eq. 2.53) and the inverse intrinsic calibration (see
Eq. 2.54), the corresponding sensor coordinates (u, v) for each image pixel (m, n) in a
panoramic image can be computed. This inverse camera model relates to the inverse projec-
tion function R′ for the Target-to-Source Mapping presented in the last section.
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2 Omnidirectional cameras

2.4.3 Interpolation

Once the corresponding sensor coordinates of image pixels in a panoramic image have been
computed, these coordinates are available for further rectification process and do not need to be
recomputed for the same omnidirectional camera. Theses sensor coordinates (u, v) are stored
in a matrix F that functions as a Look-Up-Table (LUT) to quickly transform original images
into panoramic images in online rectification processes. Eq. 2.55 presents the structure of this

matrix: F′ = M ×N × 2 with M = Number of Columns
N = Number of Rows

(2.55) Following Eq. 2.55,

the size of F relates to the size of the panoramic image M, N whereas the values at the entries
(m, n) of matrix F contain the required sensor coordinates instead of intensity values.

PF =

[
u
v

]
m,n

=

[
Fm,n,1

Fm,n,2

]
with m = 1 . . . M and n = 1 . . . M (2.56)

The computed sensor coordinates (u, v), however, are not coincident with the grid points of
the camera sensor. In other words, the pixel positions (u, v) differ from the grid points of the
camera sensor and could be located between several matrix elements (see Figure 2.27). Thus,
the difficulty is to determine the sensor pixel (or pixels) whose intensity value I(u, v) can be
mapped to the target area. Interpolation can be used to overcome this problem and to determine
the correct intensity value of a pixel in a target image.

In general, interpolation is a technique to determine values of certain positions in a discrete
function when the required positions are not coincident with the sampling points. Common
examples in the image processing domain using interpolation include geometric image trans-
formations such as image scaling or image rotation. The main focus of interpolation here is to
estimate intensity values for pixels in a target image whose reprojected locations are not coin-
cident with grid points of the camera sensor. The most common interpolation methods and the
interpolation kernels are presented below.

Nearest-Neighbor interpolation

Nearest-Neighbor Interpolation is an interpolation method in one or more dimensions and is
also known as proximal interpolation or point sampling interpolation [53]. Nearest-neighbor
interpolation approximates values for points on plane using the intensity values of points in
the neighborhood of theses points. This interpolation simply selects the intensity value of the
nearest sensor pixel (u, v)Interpolation in a neighborhood around a computed sensor pixel (u′, v′).
To achieve this, it is sufficient to round the computed sensor coordinates (u′, v′) to integer
values. The interpolation kernel following Eq. 2.57 is presented in Figure 2.28(a).

Knn(x, y) =

{
1 , 0 ≤ |x|, |y| < 0.5
0 otherwise (2.57)
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Figure 2.27: The position of matrix points in panoramic images differs from the position of grid
points on the camera sensor. Intensity values of camera pixels must be interpolated
to obtain valid intensity values for pixels in a panoramic image [14].

An intensity value determined in the manner for a sensor position (u′, v′) represents the intensity
value at the corresponding target image pixel (m, n). Nearest-neighbor interpolation is fast and
easy to implement, but it does not consider intensity values of other, neighboring pixels at all.
As a result, there are staircase-shaped image artifacts in rectified images. These artifacts may
lead to several problems in object detection as properties of objects may be changed. Bilinear
and bicubic interpolation overcome this limitation and provide better rectification results.

Bilinear interpolation

In contrast to nearest-neighbor interpolation, bilinear interpolation considers intensity values
of neighboring pixels. Bilinear interpolation is an extension of the one dimensional linear inter-
polation [53] and can be used to interpolate functions with two dimensions, e.g. two variables
(sensor coordinates) on a regular image grid in one domain that differs from the sensor grid of a
camera. Bilinear interpolation first performs a linear interpolation in one direction and another
interpolation in the other direction.

In image processing, bilinear interpolation is realized with a 2D-kernel function and allows
an interpolation of intensity values for every computed sensor coordinate (u′, v′). Bilinear
interpolation uses intensity values of the four nearest pixels to find an appropriate intensity
value for a specific pixel position. Therefore, the distances to the four nearest sensor pixels
(ui, vi) are calculated and the intensity values of the four nearest pixels are weighted depend-
ing on their distance to the target sensor coordinate (u′, v′) (see Eq. 2.58). That will lead to
a smoother, panoramic image that contains fewer artifacts compared to rectified images using
nearest-neighbor interpolation.

Kbl(x, y) =

{
1− x− y − xy , 0 ≤ |x|, |y| < 1
0 otherwise (2.58)
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Figure 2.28: Different kernels that are used for interpolation.

Bicubic interpolation

The best kernel function to be used for interpolation is the sinc-function where sinc(x) =
sin(πx)

πx
. However, Burger et al. [53] mentioned that the sinc-function is not suitable for practical

applications due to its infinite kernel size. Instead, approximating the sinc-function with a
locally defined cubic-function kbc(u) helps to make this kernel applicable for technical purposes.
Eq. 2.59 describes the approximated sinc-function where parameter a defines its gradient as
presented in [53].

kbc(u) =


(a + 2) · |u|3 − (a + 3) · |u|2 + 1 , 0 ≤ |u| < 1
a · |u|3 − 5a · |u|2 + 8a · |u| − 4a , 1 ≤ |u| < 2
0 , 0|u| ≥ 2

(2.59)

Similarly to bilinear interpolation, bicubic interpolation is an extension of the one-dimensional
cubic-function kbc(u) and is used to interpolate functions with two dimensions. The kernel-
function is defined by Kbc(u, v) = kbc(u)·kbc(v) for the sensor coordinates (u, v). Figure 2.28(c)
illustrates the kernel for parameter a = −1. Panoramic images are smoother and have fewer
interpolation artifacts than other images obtained with other interpolations: Therefore, bicubic
interpolation is often chosen over nearest-neighbor or bilinear interpolation. However, the im-
plementation of bicubic interpolation is more complex and leads to longer computation times.

2.5 Pixel density

In previous sections, various projections have been presented that can be used to transform
original images from omnidirectional cameras into panoramic images, but which projection is
best for a specific application? In this section, a novel method is presented to evaluate the dif-
ferent projections in terms of best utilization of sensor pixels in panoramic images for specific
applications. Therefore, Florian Böhm [14, 3] proposed the pixel density as a novel tool to
determine the resolution and, hence, the quality of panoramic images depending on the cho-
sen projection. The pixel density is also suitable for comparing various projections for image
transformation and camera/mirror configurations in terms of best utilization of sensor pixels in
panoramic images.
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Baker [31] introduced a formalism to determine the resolution of omnidirectional cameras that
depends on the mirror characteristic k and on the distance c between the projection center and
the pinhole of the perspective camera. However, this camera resolution does not indicate any-
thing about the pixel distribution in rectified images when choosing a specific projection such
as the spherical or cylindrical projection. For this reason, the pixel density σ is proposed as a
new value to evaluate different projections and to compare different configurations of omnidi-
rectional cameras in terms of best utilization of sensor pixels in panoramic images.

The pixel density is also called the position-dependent resolution of panoramic images and
is determined using the distances of neighboring pixels in rectified images reprojected onto
the sensor plane. In other words, the positions of neighboring pixels in panoramic images are
mapped onto their corresponding positions on the sensor plane, and their distances to each other
on the sensor plane are computed. Thus, the horizontal pixel density σh(m,n) and the vertical
pixel density σv(m,n) are required to compute the pixel density σ. Figure 2.29 gives an overview
of the basic concept for determining the pixel density. The horizontal pixel density σh(m,n) at
position [m, n]T is computed following Eq. 2.60:

σh (m,n) =
1

2
· dh (m,n) with (2.60)

dh (m,n) =
√

(u(m+1,n) − u(m−1,n))2 + (v(m+1,n) − v(m−1,n))2

Analogically, the vertical pixel density σv(m,n) at position (m, n)T is defined as

σv (m,n) =
1

2
· dv (m,n) with (2.61)

dv (m,n) =
√

(u(m,n+1) − u(m,n−1))2 + (v(m,n+1) − v(m,n−1))2

The pixel density σg(m,n) at position (m, n) is defined as the geometric mean of the horizontal
and vertical pixel densities following Eq. 2.62:

σg (m,n) =
√

σh (m,n) · σv (m,n) (2.62)

The pixel density σ describes the utilization of sensor pixels in panoramic images whose in-
tensity values are used to compute the intensities of image pixels in panoramic images. Con-
sequently, the pixel density is also a measurement value to indicate the resolution of image
regions in rectified, panoramic images. It is shown, that best utilization of sensor pixels and
therefore best image quality of panoramic images is obtained for images having a pixel den-
sity close to unity. This can be understood as intensity information of one sensor pixel that is
directly mapped to the corresponding pixel position on a target image. Moreover, a pixel den-
sity less than unity denotes poor resolution as the information of one sensor pixel is used for
several pixels in panoramic images. Values of the pixel density larger than unity denote good
resolution but also indicate a wast of sensor pixels since intensity information of several sensor
pixels is mapped onto the same pixel in a panoramic image. As discussed later in Section 2.6,
the characteristic of the pixel density depends on the chosen camera configuration and on the
chosen projection.
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Figure 2.29: Positions of panoramic image pixels (m, n) and their distances to each other on
the sensor plane. These distances are used to compute the pixel density [14].

2.6 Results

In this section, the performance of the proposed chessboard corner extraction algorithm (see
Section 2.3.1) is evaluated in terms of robustness against differently illuminated calibration
images and in terms of its relevance for the quality of calibration results. Additionally, this
evaluation has been carried out in terms of accuracy, reprojection error and number of iterations
required for error minimization by means of several experimental results on real and simulated
image data.

For this purpose, variously illuminated calibration images with different numbers of chessboard
squares were captured both by real, low resolution and high resolution omnidirectional cameras.
These images served as input to evaluate the performance of the proposed algorithm and are
presented in the following. Further detailed experiments and evaluations of the calibration
procedure (see Section 2.3.2) were presented by Scaramuzza and may be found in [30]. In
[30], the calibration algorithm was evaluated in terms of the influence of noisy input data due
to manual selection of chessboard corners, the degree of the polynomial mirror function f (see
Section 2.2.3 and Section 2.2.4) and the influence of the number of calibration images on the
results. Camera calibration and chessboard corner detection all run in a Matlab environment so
that the times for execution measured in the experiments relate to the execution times needed
using the Matlab environment.

2.6.1 Chessboard detection and camera calibration

Chessboard corner extraction

In a first setup, experiments were conducted to evaluate the robustness of the proposed
chessboard-corner extraction algorithm. Therefore, variously illuminated calibration images
containing different numbers of chessboard squares (05x07, 07x09, 09x11) were captured by
both a low resolution (640×480 pixel) and a high resolution (1024×768 pixel) omnidirectional
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(a) pI (b) dhD (c) dsN (d) bhD (e) bsN

Figure 2.30: Differently illuminated calibration images used for performance evaluation of the
proposed chessboard corner extraction algorithm. Legend: pI: perfectly illumi-
nated, dhD/bhD: dark/bright with high dynamic, dsN/bsN: dark/bright with strong
noise

camera. The lighting scenarios were categorized in five illumination types. These types are
perfectly illuminated calibration images pI and dark and bright images both with strong noise
and high dynamic (dhD/bhD: dark/bright with high dynamic, dsN/bsN: dark/bright with strong
noise). Figure 2.30 illustrates sample images for each scenario captured by a real omnidirec-
tional camera in the laboratory. In the following, the shortcuts introduced for each scenario are
utilized for figures and tables.

Table 2.1 illustrates chessboard corner extraction results using sets of 40 calibration images
obtained for each scenario. The evaluation is performed for omnidirectional cameras with a
hyperbolic mirror with a mirror constant k = 7.55. Simulations demonstrated that the mirror
type (parabolic, conic, hyperbolic mirror) has no influence on chessboard corner extraction. The
upper part of Table 2.1 shows the percentage detection rates of chessboard corners in low reso-
lution images (640× 480 pixels). A detection rate of 92.5% means that the chessboard corners
are sucessfully extracted in 92.5% of all test images. The lower part of Table 2.1 presents the
percentage detection rates of chessboard corners in high resolution images (1024× 768 pixels).
Chessboard corner extraction is successfully completed when the chessboard, the markers and
the corners are extracted and when the corner order is correct.

It can been seen, that perfectly illuminated calibration images lead to good detection results
for all tested scenarios. Difficult lighting scenarios also lead to satisfying results in chessboard
corner extraction, whereas the detection rates significantly decrease for very dark and noisy cal-
ibration images. Moreover, the detection rate for 09x11 squared chessboards in low resolution
calibration images is very small due to bad extraction of very small squares in low resolution
images. In particular, very small chessboard squares close to the image center are difficult to
extract and lead to a failure of chessboard detection. On the other hand, less squared chess-
boards in high resolution images (f.ex. 05x07) may also result in worse detection results. In
the algorithm, the chessboard region is assumed to be the one that contains the most rectan-
gles: Consequently, images regions that contain more rectangles than the chessboard pattern
are wrongly classified valid chessboard regions. Increasing the number of chessboard squares
in high resolution calibration images easily overcomes this limitation and also leads to a better
approximation of the mirror function.
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Resolution Squares dhD dsN pI bhD bsN

640× 480
05x07 92.5% 90.0% 97.5% 92.5% 85.0%
07x09 87.5% 82.5% 95.0% 90.0% 87.5%
09x11 72.5% 65.0% 80.0% 75.5% 67.5%

1024× 768
05x07 87.5% 75.0% 90.0% 85.0% 77.5%
07x09 92.5% 85.0% 97.5% 90.0% 87.5%
09x11 90.0% 82.5% 95.0% 92.0% 85.0%

Table 2.1: Detection rates [%] for various illumination scenarios using low-resolution (640×480
pixels) (top) and high-resolution (1024× 768 pixels) images (bottom).

Chessboard Extraction Marker Corner Corner Order
≈ 59% ≈33% ≈ 7% ≈ 1%

Table 2.2: Failure rate for intermediate extraction steps.

When the overall chessboard corner extraction fails, the algorithm fails mostly in one of its
intermediate extraction steps. Table 2.2 gives an overview of failure rates for the proposed
extraction steps. For example, a failure rate of 59% for chessboard extraction indicates that,
when chessboard corner extraction breaks off, chessboard extraction fails in 59% of all cases.
The main difficulty in chessboard corner extraction is the robust detection of the chessboard
regions. This can be seen in the high failure rate for chessboard detection. Once the chessboard
region is identified, marker as well as corner detection can be easily performed.

As a next step, the detection rate for chessboard corner detection for different distances between
camera and chessboard is determined. Similarly to previous experiments, chessboard corner
extraction is complete when chessboard, markers and corners are successfully extracted and
when the corner order is correct. Figure 2.31 gives an overview of the detection rates both for
low-resolution images (see Figure 2.31(a)) and for high-resolution images (see Figure 2.31(b))
captured in variously illuminated scenarios. Good detection rates are obtained for chessboards
located close to the camera (< 20cm), whereas chessboards positioned far away from the cam-
era cannot be sufficiently detect. In 87% of all cases when chessboard-corner extraction failed,
the chessboard region cannot be sufficiently detected.

Iterative calibration refinement

The calibration algorithm proposed by Scaramuzza (see Section 2.3.2) allows estimating the
calibration error. The calibration error is suitable for determining the quality of camera calibra-
tion using the reprojection error. With the help of the determined calibration parameters, the
known 3D-world coordinates of the chessboard corners are reprojected into image coordinates.
This reprojection is compared to the location of the extracted corners in calibration images: The
average of all differences between the image coordinates recomputed for all chessboard corners
and the actual positions of the extracted corners in calibration images is called the reprojection
error. Consequently, a low reprojection error means a good calibration result and vice versa.
The calibration process is refined by an iterative minimizing of this reprojection error. The
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(a) Low-resolution images
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(b) High-resolution images

Figure 2.31: Detection rates [%] for differently illuminated calibration patterns captured at dif-
ferent distances to the camera.

iteration process stops when there are no significant changes of the actual reprojection error
compared to the reprojection errors of previous iteration stages.

In further experiments, the number of iterations that is required to refine the calibration for
both manually and automatically extracted chessboards is measured and compared. Figure 2.32
presents the number of iterations that are required to obtain sufficient calibration results for an
omnidirectional camera using different calibration patterns. The camera used in the experiment
has a hyperbolic mirror with fixed mirror constant k = 7.55 (see Figure 2.32(a), Figure 2.32(b),
Figure 2.32(c)). Figure 2.32 also shows that manual selection of chessboard corners leads
to larger initial reprojection errors compared to camera calibration with automatic chessboard
corner extraction. The higher reprojection error results from inaccuracies caused by manual
selection of chessboard corners in calibration images. Consequently, more iteration stages are
necessary to refine the calibration when using manually extracted corners. It can be seen, that at
least four iteration stages are necessary to refine camera calibration based on manually selected
chessboard corners and to obtain similar accuracies compared to refinement stages based on
automatic chessboard corner extraction.

However, it is noteworthy that the reprojection error increases with an increasing number of
chessboard corners. The calibration is optimized to approximate a mirror function that matches
to all chessboard corners. In general, functions that are approximated with many supporting
points have a higher overall error than functions that are approximated with only a few (see Fig-
ure 2.32(c)). However, the quality of the mirror function increases with an increasing number
of chessboard corners. This is presented in the next section.

Number of calibration images

The number of calibration images significantly influences the quality of the approximated mir-
ror function f and also influences the accuracy of the position of the determined distortion
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(a) k = 7.55, Sqs: 05x07
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(b) k = 7.55, Sqs: 07x09
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(c) k = 7.55, Sqs: 09x11

Figure 2.32: Number of iteration stages required for minimizing the re-projection error.
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Figure 2.33: Approximation error of the estimated mirror function (a) and the positioning error
of the distortion center (b, x-position), (c, y-position) over the number of calibra-
tion images.

center. In general, the reprojection error depends on the approximation error of the mirror
function f and on the positioning error of the distortion center (u, v). Large approximation
errors and a large position error of the distortion center result in a high reprojection error. In
this section, experiments are conducted to study the approximation error of the mirror function
f (polynomial degree = 4) and the positioning error of the distortion center depending on the
number of calibration images. Therefore, calibration images are captured by an omnidirectional
camera that has a hyperbolic mirror and a mirror constant (k = 7.55).

Figure 2.33(a) illustrates the approximation error of the estimated mirror function f for different
numbers of calibration images. The approximation error has been determined by computing the
size of the area that is spanned by the known ground truth mirror function and by the estimated
mirror function. This area becomes zero when both functions overlap and increases to the ex-
pense that differences between both functions grow. Figure 2.33(b) and Figure 2.33(c) illustrate
the absolute position errors of the estimated distortion centers in original images over the num-
ber of calibration images. This error is determined by computing the differences between the
known and the estimated distortion center. It is shown that a growing number of calibration im-
ages and chessboards containing many chessboard squares lead to good approximation results.
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Illumination pI dhD dsN bhD bsN
Chessboard detection 6.3853 7.3108 8.9477 7.2849 7.3001

Marker detection 0.1797 0.2211 0.1890 0.2330 0.2599
Corner extraction 5.1161 5.1274 5.3459 5.1679 5.4109

Corner order 0.0056 0.0056 0.0056 0.0056 0.0056
Total time 11.6867 12.6649 14.4882 12.6914 12.9765

Table 2.3: Execution times for chessboard corner extraction on a 2.2GHz AMD-Phenom pro-
cessor for variously illuminated calibration images (ODVS with k = 7.55, 07x09
squares) using Matlab. Unit: [sec].

Execution time

Finally, experiments were conducted to determine the execution time required to extract chess-
board corners in a single calibration image. The chessboard corner extraction algorithm is
implemented in Matlab so that the times for execution relate to execution times in Matlab. In
a first setup, the execution times for chessboard corner extraction are measured for variously
illuminated calibration images. Therefore, calibration images were captured from chessboard
patterns containing 07x09 chessboard-squares using a low-resolution omnidirectional camera
with 640× 480 pixels. Table 2.3 gives an overview of the measured execution times over a set
of 40 calibration images on a 2.2GHz AMD-Phenom quad-core processor. It might be seen,
that the execution time increases for chessboard detection in dark and noisy calibration images.
But once the chessboard region is extracted, the execution times for marker detection, corner
extraction and corner order remain approximately constant.

In a second setup, the execution times are determined for chessboard extraction using well-
illuminated calibration images captured by both a low and a high resolution camera. The
calibration images are also captured from chessboard patterns that have different numbers of
chessboard squares. In this experiment, the influence of image size and the number of chess-
board squares on the extraction time is analyzed. Table 2.4 illustrates the execution times for a
single calibration image on a 2.2GHz AMD-Phenom quad-core processor using a Matlab envi-
ronment. The left part of Table 2.4 represents the execution times for low resolution calibration
images and the right part illustrates the execution times for high resolution calibration images.
Table 2.4 illustrates that the execution time for chessboard, marker and corner detection in-
creases when increasing the image size and the number of chessboard squares in calibration
images. By contrast, the execution time for determining the corner order is independent of the
image size and depends only on the number of chessboard squares in calibration images.

2.6.2 Pixel density

In this section, different projections presented in Section 2.4 are evaluated and the properties
of the pixel density introduced in Section 2.5 are analyzed. The characteristic of the pixel den-
sity depends on the chosen region of interest, on the mirror and camera configuration and on
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Resolution 640x480 1024x768
Num. of squares 05x07 07x09 09x11 05x07 07x09 09x11

Chessboard detection 6.4187 6.6266 6.7187 20.5800 21.4655 22.4871
Marker detection 0.2178 0.2223 0.2294 0.5382 0.5579 0.5536
Corner extraction 4.5492 5.2517 6.2363 5.2460 6.9984 8.7275

Corner order 0.0040 0.0056 0.0110 0.0042 0.0056 0.0098
Total time 11.1897 12.1062 13.1954 26.3684 29.0274 31.7780

Table 2.4: Execution times (single image) for perfectly illuminated calibration images captured
by low and high-resolution omnidirectional cameras. Different numbers of chess-
board squares are used in the calibration images, and execution is performed on a
2.2GHz AMD-Phenom processor using Matlab. Unit: [sec].

the chosen projection. Images from simulated omnidirectional cameras in synthesized environ-
ments and images taken from real omnidirectional cameras in the laboratory are used to analyze
and to discuss the pixel density. For both synthesized and real images, various omnidirectional
cameras are designed that are based on the single point of view theorem of Baker et al. (see
Section 2.2.2). The cameras have different mirror characteristics (k), varying distances (c) be-
tween the projection center and the pinhole of the perspective camera, and use diverse fields of
view (FOV) (α) for the perspective camera.

Table 2.5 gives an overview of the tested parameters for the simulated omnidirectional camera.
Secondly, particular regions of interest (ROI) were defined that monitor areas below the camera
and 3D-scenes with short and large distances to the camera system. All these regions provide
the same vertical and horizontal number of pixels for all camera configurations in order to easily
analyze and evaluate the properties of the pixel density. Original images are transformed into
panoramic images for each camera configuration, and the pixel density is computed for each
region of interest with different projections using real and synthesized images. However, the
difference in the characteristics of the pixel densities between real and synthesized images was
less than 0.3 pixels, so that corresponding curves overlap. Therefore and for a better under-
standing, only synthesized images are presented and discussed in this section.

Rotationally symmetric projections

The projection areas such as conical, cylindrical and spherical projection are chosen in such a
way that the projection area is rotationally symmetric with respect to the z-axis of the camera
coordinate system (see Figure 2.6(a)). Consequently, the pixel density σ remains constant for all
numbers of columns and varies only along one row in rectified images. The characteristic of the
pixel density is analyzed for several camera configurations having a constant mirror curvature
k and different distances c between the projection center of the mirror and the pinhole of the
perspective camera (see Table 2.5, scenario 2 and 3). In scenario 2, the field of view of the
perspective camera is chosen to remain constant for all tested distances c between the camera
and the mirror. For each test case in scenario 3, the field of view of the perspective camera is
adjusted to the mirror size to obtain best utilization of sensor pixels for original images. The
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Scenario c (mm) k α (degree)
50 5,50 43,00

1 50 7,55 39,50
50 10,00 36,75
50 7,55 39,50

2 75 7,55 39,50
100 7,55 39,50
50 7,55 39,50

3 75 7,55 28,50
100 7,55 22,25

Table 2.5: Overview of the tested parameters for an omnidirectional camera.

property of the pixel density is then studied for omnidirectional cameras with single point of
view and constant distances c between the camera and the mirror (scenario 1).

Properties of the pixel density for cameras with fixed mirror constant and
varying distances

In a first setup, the field of view of the perspective camera remains constant whereas the dis-
tance c between the projection center of the mirror and the camera pinhole varies. Figure 2.34
illustrates images captured by a synthesized omnidirectional camera. The omnidirectional cam-
eras used in this setup are characterized by a mirror with a fixed characteristic k = 7.55, by a
constant field of view and different distances (c = 50mm, c = 100mm) between the pinhole
of the perspective camera and the projection center (see Figure 2.34(a) and Figure 2.34(b)). In
a second setup, the field of view of the perspective camera is adjusted to the distances c and to
the border of the mirror to obtain best pixel utilization of sensor pixels in original images. Fig-
ure 2.34(c) illustrates an image captured by an omnidirectional camera with the mirror constant
k = 7.55 and the distance c = 100mm between the mirror and the projection center. In contrast
to previous camera configurations, the field of view is adapted to the mirror size. The regions
of interest (displayed in red) are chosen for image rectification and are, hence, suitable for com-
puting the pixel density for analysis. Figure 2.35 illustrates the panoramic images obtained for
the second setup.

Figure 2.36 illustrates the characteristics of the pixel densities of panoramic images for the
tested camera configurations for scenario 2 and scenario 3. Thus, the charts in the first row
of Figure 2.36(a), Figure 2.36(b) and Figure 2.36(c) illustrate the characteristics of the pixel
densities in panoramic images were obtained by omnidirectional cameras. These use constant
fields of view and different distances d simultaneously. The charts in the second row illustrate
the characteristics of the pixel densities in panoramic images obtained by cameras with varying
fields of view.

It is shown that, for any increasing distance c between the mirror and the pinhole of the perspec-
tive camera, the values of the pixel density decrease for all projections when using perspective
cameras with a constant field of view (see Figures 2.36(a), 2.36(b), 2.36(c)). In other words, an
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(a) c = 50mm, FOV = 39, 5◦ (b) c = 100mm, FOV = 39, 5◦ (c) c = 100mm, FOV =
22.25◦

Figure 2.34: Synthesized images captured by an ODVS with constant mirror k = 7.55 and
various distances c using constant and adapted FOV’s.

(a) c = 50mm, k = 7.55 (b) c = 75mm, k = 7, 55 (c) c = 100mm, k = 7, 55

Figure 2.35: Panoramic images (cylindric projection) from an omnidirectional camera with
fixed mirror constant k, different distances c between the pinhole of the camera
and the projection center of the mirror and the adjusted field of view.

increasing distance c and a constant field of view of the camera lead to a reduction of sensor
pixels available for original images projected by the mirror. This phenomenon is independent
of the chosen projection, whereas a decreasing pixel density is more significant for the outer
image regions than for inner image regions of original images.

When the field of view of the camera is adapted to distance c in order to obtain good utiliza-
tion of sensor pixels, the pixel density in panoramic images is nearly identical for identical
projections. The small differences, which can be seen in Figure 2.36(d), Figure 2.36(e) and
Figure 2.36(f), result from the distance-based variance of the vertical field of view of the om-
nidirectional camera. In other words, the vertical field of view of an omnidirectional camera
increases when the distance c between the camera and the mirror is enlarged. Figure 2.35 il-
lustrates the differences of the pixel densities in panoramic images captured by omnidirectional
cameras with short and with large distances c.

Omnidirectional cameras with single point of view and different mirror
constants
In a third setup, experiments were conducted to analyze the influence of the projection on the
pixel density. Therefore, images were captured by both synthesized and real omnidirectional
cameras. These cameras have different mirror configurations (k = 5, 50, k = 7, 55, k = 10, 00)
and fulfill the single point of view theorem (see Section 2.2.1). Figure 2.37 illustrates original
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(a) Const. α, k=7.55, cyl. (b) Const. α, k=7.55, con. (c) Const. α, k=7.55, sph.

(d) Var. α, k=7.55, cyl. (e) Var. α, k=7.55, con. (f) Var. α, k=7.55, sph.

Figure 2.36: Pixel densities for panoramic images obtained from cameras with fixed fields of
view (top) and adapted fields of view (bottom) are computed for all cylindrical,
conical and spherical projections. For all projections, the cameras have different
distances c = 50mm, c = 75mm and c = 100mm between the camera and the
mirror projection center.

images captured by the cameras with different mirrors. For both synthesized and real images,
a region of interest is specified and the images are transformed into panoramic images using
cylindric, conic and spheric projection. In a next step, the pixel density for all camera configu-
rations is calculated. Figure 2.38 illustrates the resulting characteristic of the pixel density.

For all camera configurations, the pixel density for the cylindrical projection varies in a large
range (σ ∈ [0.3, 2.8]) compared to other projections. This results in a high resolution in the
upper regions of rectified images, but in a very poor resolution in the lower parts of panoramic
images. In contrast to the cylindrical projection, the pixel density for the conic projection varies
the least for all tested camera configurations. Consequently, the resolution in rectified images
is more uniform and the sensor pixels are better distributed in panoramic images. However, the
conic projection leads to strong distortions in panoramic images. A good compromise is the
spherical projection with few distortions and a nearly homogeneous utilization of sensor pixels
in rectified images. For this reason, the characteristic of the pixel density also demonstrates that
the commonly used cylindrical projection is not the best projection for image rectification due
to the large variations in its characteristic compared to other projections (see Figure 2.38).

Figure 2.39 illustrates panoramic images obtained from original images captured by real omni-
directional cameras. The characteristics of the pixel densities σ are determined for the omnidi-
rectional cameras having different mirror configurations and fulfilling the single point of view
theorem. The resulting pixel densities are presented in Figure 2.38.
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(d) k = 5.50 (e) k = 7.55 (f) k = 10.00

Figure 2.37: This figure illustrates both synthesized and real images from ODVS with SPOV
for different mirror configurations. The marked regions of interest are used to
transform original images into panoramic images and to compute the pixel density
for these images.

(a) k=5.50, SPOV (b) k=7.55, SPOV (c) k=10.00, SPOV

Figure 2.38: Pixel densities of panoramic images obtained from omnidirectional cameras hav-
ing different mirrors and fulfilling the single point of view theorem.

Plane projection

In comparison to the conic, cylindric and spheric projections, the plane projection is not rota-
tionally symmetric. Consequently, the pixel density is not constant over all number of columns
in a rectified image. Figure 2.40 illustrates an original image captured by an omnidirectional
camera with the mirror constant k = 7.55 and the transformed image using plane projection. It
can be seen, that the plane projection can produce images as if taken directly by a perspective
camera (see Figure 2.40(b)).
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(a) k=5.50, cylindric (b) k=5.50, conic (c) k=5.50, spheric

(d) k=7.55, cylindric (e) k=7.55, conic (f) k=7.55, spheric

(g) k=10.00, cylindric (h) k=10.00, conic (i) k=10.00, spheric

Figure 2.39: Panoramic images obtained by omnidirectional cameras with different mirror con-
figurations k = 5.50, k = 7.55 and k = 10.00 using cylindric, conic and spheric
projection.

(a) Original image (b) Rectified image (c) Pixel Density

Figure 2.40: Original image with highlighted region of interest (a). Rectified image using plane
projection (b) and its characteristic of the pixel density (c).

Execution time for image rectification

The proposed rectification algorithm (see Section 2.4) can transform original images captured
by omnidirectional cameras into panoramic images. These images are a prerequisite for extract-
ing drivers and estimating their body heights. Due to this, image rectification must be suitable
to be performed online. The image rectification process is based on a Look Up Table to enable
an efficient implementation in C or C++ and, hence, to obtain fast execution times. Table 2.6
gives an overview of the execution time for image transformation required by an optimized
C-implementation running on a 2.2 GHz AMD 64 X2 4200+ processor.
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Rectified Image Size 480× 204 720× 306 960× 408

Nearest Neighbor Interpolation 3.25 ms 4.84 ms 6.61 ms
Bilinear Interpolation 4.53 ms 6.81 ms 9.05 ms
Bicubic Interpolation 6.35 ms 9.62 ms 13.28 ms

Table 2.6: Execution times required to transform original images into panoramic image by
means of an optimized, C-implemented rectification algorithm (Image size: 640×480
pixels).

2.7 Discussion

In Section 2.3.1, an algorithm is proposed to automatically extract chessboard corners in cali-
bration images. This algorithm is highly robust against variously illuminated calibration images
and is an extension to the calibration process that has been proposed by Scaramuzza. In that
algorithm, chessboard corners have to be selected manually during the calibration process. But
manual selection of chessboard corners is very time consuming and cannot calibrate omnidi-
rectional cameras in the automotive domain. At the same time first results have been presented
in [16] and [18], another extraction algorithm has been presented by Rufli et al. in [57] that
automatically extracts chessboard corners in calibration images captured by omnidirectional
cameras. A comparison to those techniques demonstrated a similar detection rate for perfectly
illuminated images. Chessboard corner detection in calibration images captured under different
illumination conditions, however, led to a detection rate two times lower than in our algorithm
proposed in Section 2.3.1. An advantage of the algorithm proposed by Rufli et al. is the use of
pre-compiled C-based code that drastically reduces the time for execution. But code optimiza-
tion and, hence, the speeding up of the processing time for chessboard corner extraction using
c-functions are potential tasks for future work.

In Section 2.5, the pixel density was introduced as a measurement parameter to compare dif-
ferent projections such as conical, cylindrical and spherical projection and to evaluate mirror
camera configurations of omnidirectional cameras. In this manner, the pixel density supports
users in selecting the optimal projection and projection parameters in terms of best utilization
of sensor pixels in panoramic images. Best utilization of sensor pixels in panoramic images
and, therefore, best resolution can be obtained when the pixel density is close to unity for all
pixels in panoramic images. Values of the pixel density close to unity signify a direct mapping
of intensity information from one sensor pixel position to the corresponding pixel position on
the target image. A pixel density less than unity denotes poor resolution since the information
of one sensor pixel is mapped to several pixel positions in panoramic images. Values larger than
unity denote good resolution but also mean a waste of sensor pixels since intensity information
of several sensor pixel positions is projected onto the same pixel position in the target image.
This may also lead to a loss of resolution (for source to target mapping) due to an overlap of
intensity information at one pixel position.

Furthermore, the projection with least variance in the pixel density for different mirror constants
k and for various distances c between the camera pinhole and the projection center is recom-
mended for rectification. In general, the conic projection seems to be the best projection due to
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fewer variances in the characteristic of the pixel density and due to values close to unity. How-
ever, the conic projection leads to highly distorted panoramic images and might be a problem
for image processing routines. In this case, the spherical projection can be a good alternative
to the conic projection. The cylindrical projection may also be a good projection to transform
original images into panoramic images if only small regions in original images are required for
image transformation. Thus, the pixel density is suitable for choosing the projection with best
utilization of sensor pixels in panoramic images.

Similarly to rotationally symmetric projections, the pixel density is also suitable for finding
optimal projection parameters for plane projections. The parameters of the target projection
planes can be carefully chosen to obtain only a small variation of the pixel density across the
whole image.

2.8 Conclusion

In this chapter, the geometry and properties of omnidirectional cameras are presented including
the mathematical representation of the camera. In particular, central projection cameras, i. e.
omnidirectional cameras having a single point of view, are highly desirable as they can generate
perspectively correct panoramic images. The known epipolar geometry of perspective cameras
can be adapted to omnidirectional cameras in order to generate 3D-ambiance information of the
area surrounding the car door. This chapter also presents the camera calibration process [30]
especially targeting omnidirectional cameras to obtain the parameters of the camera model.
The camera model is a prerequisite for transforming original images taken by the camera into
panoramic images. In Section 2.3.1, a novel extension to the calibration scheme is proposed
to enable robust, automatic extraction of chessboard corners in calibration images to perform
camera calibration for applications in the automotive domain. The locations of chessboard
corners in calibration images serve as an input to the calibration procedure to estimate the
camera model. The proposed extraction algorithm is also extended to gain the robustness of
chessboard corner extraction for variously illuminated calibration images.

This thesis also surveys commonly used projections and proposes an algorithm to transform
original images captured by omnidirectional cameras into panoramic images (see Section 2.4).
In Section 2.5, a new value – the pixel density – is proposed as a new tool to compare various
projections for image transformation and to evaluate camera/mirror configurations in terms of
best utilization of sensor pixels in panoramic images. In this manner, best utilization of sensor
pixels in panoramic images can be obtained for any camera configuration. It is also shown that
the commonly applied cylindrical projection is not suitable for some omnidirectional cameras
due to its large variances of the pixel density compared to other projections. In this thesis, the
pixel density as a tool for comparing different projections and camera configurations has first
been proposed in the field of camera calibration and image transformation.

In the remainder of this thesis, the camera model presented in Section 2.2.4 and the image rec-
tification method proposed in Section 2.4 are used to estimate the body-heights of approaching
drivers and to generate 3D-ambiance information using motion stereo algorithms.
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3.1 Introduction

Nowadays, passenger comfort related issues are active research topics in the area of automo-
tive ergonomics. maximizing passengers comfort in today’s cars is gaining importance in the
domain of automotive systems engineering, in particular for ingress/egress to/from a car in nar-
row parking situations. Studies in automotive ergonomics illustrate a strongly increasing level
of comfort during ingress when there is an automatic adjustment of seat position according to
driver height. For this purpose, automatic passenger seat adjustment has recently attracted a lot
of attention [58, 59, 60, 61].

However, one drawback of known solutions lies in storing individual driver height in the car
system or in a personal key. This results in a number of problems: Storing the driver’s height
is not feasible for rental cars. Furthermore, accidents may happen if a tall person mistakenly
uses the key of a shorter one and the system adjusts the seat according to the height of the
shorter person. To overcome these limitations and to provide individually adjusted seat positions
according to driver height, this chapter introduces a new method of estimating the height of
approaching car drivers based on image data of a single omnidirectional camera. The camera is
integrated with the side-view mirror of a car and can monitor the surroundings next to the car
in theirs entirety and, hence, to extract drivers approaching from anywhere due to its very large
field of view.

Figure 3.1 illustrates such an omnidirectional camera (see Figure 3.1(a)) that is integrated with
the side-view mirror of a car (see Figure 3.1(b)). Height estimation is subdivided into two pro-

(a) (b)

Figure 3.1: Omnidirectional camera (a) that is integrated with the side-view mirror of a car (b)
to estimate the height of approaching drivers.
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Figure 3.2: General framework for people extraction and height estimation.

cessing stages: First, the proposed algorithm extracts approaching drivers in panoramic images
captured from the environment next to the car by separating persons from the background. Sets
of foot and head points are determined for approaching drivers on which further processing
stages are based. Second, the algorithm initially estimates the tilt of inclined parked vehicles
based on gathered samples of head and foot points. Tilt of inclined parking vehicles strongly
influences body height estimation and has to be considered when computing body heights of
approaching drivers. Thereafter, an iterative optimization process removes outliers in the in-
put data, refines the tilt of inclined parked cars and computes the body heights of approaching
drivers. Then, the estimated height is used to ergonomically pre-adjust the seat according to
driver body height to ease ingress. This method enables absolute body height estimation for a
wide range of parking scenarios without knowledge of passengers or geometrical information
of the surroundings. In particular, body height estimation is suitable for rental cars and may
avoid accidents by mistakenly chosen keys.

3.2 Related work and contributions

An effective algorithm to automatically extract drivers and to estimate their body heights using a
single camera consists of the following processing stages: Modeling of dynamic environments,
object segmentation, object classification and tracking and body height estimation based on
gathered input data from the camera. Figure 3.2 illustrates a high level overview of the general
framework to extract people and to estimate their body heights. Object and motion detection is
essential for nearly every surveillance tasks and people extraction system and aims to separate
regions that contain objects like humans or cars from the background in an image. This process
commonly includes environment modeling, object and motion detection, object clustering and
classification. The result of the subsequent absolute body height estimation depends to a large
extent on the quality of the regions in which humans are extracted. Incomplete regions may lead
body height estimation to fail in particular when the regions for foot and head point determina-
tion have not been extracted. The first part of this chapter focuses on precise region extraction
of the image regions that is a prerequisite to precisely determine body heights of approaching
drivers.

3.2.1 Environment modeling and object detection

Each object extraction algorithm requires constructing and updating of an environment model to
permit object detection and classification. Hu et al. [62] provide a very interesting survey about
current techniques for environment model-based surveillance. In general, one can distinguish
between two common environment models. 2D-models that are based on image coordinates
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Initia-
lisation

Prior
Knowl.

Static
Objects

Obj.
Size

Pers-
pec-
tive

Paral-
leliza-
bility

Com-
plete-
ness

Template
Matching

no needed ind. bad bad middle middle

HMM no needed ind. bad bad middle high
Features no needed ind. bad bad good middle
Optical
Flow

no no bad ind ind. good low

Background
Estimation

needed no ind. ind ind. good high

Table 3.1: Overview of object extraction methods used for people detection. Background esti-
mation seems to yield the best results for this application (ind: independent).

and 3D-models that are based on real world-coordinates. Current work of 3D-models is lim-
ited to indoor scenarios [63, 64] due to difficulties in precise 3D-reconstructions of outdoor
scenarios [62]. Moreover, 2D-models are easier to implement and are, hence, more common
in state-of-the-art applications such as surveillance or traffic monitoring. There are three types
of 2D-models that are especially targeted to the following three scenarios. One 2D-model for
static cameras, one that is feasible for pure translation cameras and one for mobile cameras.
In this thesis, the vehicle and the car door are stationary during the time of height estimation.
Therefore, a background detection algorithm is sufficient that is based on a 2D-environment
model under the assumption of a static camera. However, when dealing with moving cam-
eras, the work of Friederich [13] may be used to estimate the ego-motion of the camera and to
compensate the shift in the background.

A number of techniques for object detection and extraction exist in the image processing lit-
erature, viz., Hidden Markov Models (HMM) [65], Template Matching [66], feature-based
detection methods, optical flow-based methods [67],[68] and background separating methods.
Table 3.1 gives a brief overview of potential methods that can extract people in images and com-
pares them in terms of computation time, their abilities for parallelization in order to realize fast
people extraction, their abilities to handle perspective changes and to detect human regions com-
pletely (completeness). Background estimation and optical flow are not sensitive to changes of
perspective and to changes of object size. Furthermore, they do not need prior knowledge of the
object’s property e.g. color, shape and geometry. One disadvantage of optical flow is that it can
not detect static or very slowly moving objects. Although background estimation solves this
problem, it needs a small time interval for initialization to learn the background. Fortunately, in
the presented application such an interval is available, viz., the time interval between activating
body height estimation and the first door operation. Moreover, background estimation leads to
very precise detection results regarding completeness of extracted humans. Hence, one focus
of this chapter is on real-time people extraction algorithms using background estimation-based
techniques. Though initialization is required, the advantage of highest completeness of regions
compared to other algorithms prevails.
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3.2.2 Foreground detection

The problem of extracting objects from a video sequence has been widely studied in surveil-
lance [69], traffic monitoring [70] and vehicle guidance. In most applications, separating the
foreground from the background is the first step in object tracking. Background subtraction and
foreground modeling are powerful methods whose advantages are feature-independent segmen-
tation (e.g., textures, direction of move, speed). Other common techniques for background sub-
traction include Kalman filtering [71], kernel density estimation [72], hidden Markov models
[73], mixture of Gaussians [74], [75] and the use of color-based intensity independent features
[76]. Most of these algorithms represent each background pixel using a probability density func-
tion (PDF) and classify pixels from new images as background depending on the description
of pixels by means of their density functions. As an alternative, Bhaskar et al. [77] developed
a foreground detection algorithm using cluster density estimation based on a Gaussian mix-
ture model. This algorithm is suitable for handling illumination changes as well as dynamic
backgrounds. Similar work was done in [78] using Kalman filtering to iteratively estimate the
dynamic background texture and the regions of foreground objects. Kalman filtering was also
used by Karmann et al. [71] to model the background dynamics of each pixel by choosing
two different gains, thereby allowing fast adaptation of background changes and slow adapta-
tion of foreground pixels. Ridder et al. [79] improved this approach and presented a shadow
detection method assuming small differences between overshadowed and non-overshadowed
backgrounds. However, strong shadows caused by direct sunlight cannot be detected. Although
many background subtraction techniques have been proposed, the majority of the algorithms
address shadow detection and illumination compensation by exploiting color information (see
[72, 78]).

In scenarios where monochromatic video cameras are used – such as the presented scenario –
the existing methods are no longer suitable. The camera system used for people extraction and
height estimation consists of a monochromatic VGA camera that is designed for (cost sensitive)
applications in the automotive domain. Costly, high resolution color video cameras may be use-
ful for research, but impractical for real applications. For applications, where only monochro-
matic cameras are available, a common method to increase the robustness of image processing
algorithms is the transformation of intensity based images into lighting invariant frames. This
transformation, e.g. based on Census or Rank filtering [80, 81] is widely used, but intensity
information of homogeneous regions will be lost. In other words, it may be no longer possible
to distinguish between homogeneous foreground (cars, trucks) and background regions (walls).
Therefore, the use of intensity-based images is highly desirable for the presented body height
estimation application.

But intensity based monochromatic images lead to several challenges in object detection. For
example, it is difficult to differentiate between small illumination changes caused by shadows
or by small, valid foreground objects in gray scale images. Another challenge is to detect small
objects in low resolution images captured by an omnidirectional vision system. These problems,
along with the accuracy of background subtraction, the handling of sudden illumination changes
and the possibility of parallelizing algorithms are the underlying motivations for developing an
extended people extracting algorithm as presented in this thesis. It also describes extensions
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to background estimation (e.g., illumination compensation and shadow elimination for gray-
scale images) that are specifically tuned to the setting of the smart car door equipped with an
omnidirectional camera. Figure 3.3 gives a high level overview of the proposed system, and the
details of the algorithms for driver extraction are described in what follows.

Inspired by the background estimator of Ridder et al. [79] and by the shadow detector proposed
by Jacques Jr. et al. [82], robust background estimation and foreground detection algorithms
for gray scale images have been developed in this thesis. Ridder et al. proposed an extension to
their algorithm that takes weak shadows from stationary or moving objects into account. They
assume that weak shadows have the same characteristic as illumination changes and may hence
be adapted by the background. To avoid adaption of illumination changes into the background,
their algorithm automatically increases the threshold for foreground detection using the variance
of estimated background values over time. The threshold is high if the variance of the estimated
background values (e.g. caused by shadows) is high. However, pixels from small foreground
objects – such as humans which are far away from car – also cause a high variance and may
be suppressed. Moreover, strong shadows cannot be identified in [79], as they are detected as
valid foreground. In other words, once detected as foreground, it is impossible to differentiate
between shadow and foreground. A good shadow detector for gray scale images was introduced
by Jacques et al. [82] using normalized cross correlation (NCC). The detector assumes shadow
pixels as scaled versions (darker) of the corresponding background pixels, so that the NCC in a
neighboring region is close to unity. On the other hand, the shadow detector misclassifies valid
foreground pixels with small differences as shadow pixels.

To overcome these limitations, this thesis combines and modifies the background estimation
method proposed by Rider et al. [79] and the shadow detection algorithm presented by Jacques
et al. [82] to design a powerful background subtractor. This thesis also extends the shadow
detector with the zero means cross correlation (ZNCC) in order to distinguish between shadows
and valid foreground pixels. Furthermore, the proposed algorithm detects illumination changes
using local search windows and updates the background to compensate for slow or sudden illu-
mination changes. The proposed algorithm is also evaluated and compared with a background
estimator based on Gaussian Mixtures, with the approach of Jacques Jr. et al. [82], and with the
approach of Ridder et al. [79]. Experiments in complex outdoor and indoor environments under
various lighting conditions demonstrated good foreground detection and high robustness of the
proposed algorithm against shadows and illumination changes. The algorithms are also eval-
uated for their ability for parallelization and are compared in terms of sequential and parallel
implementations (on an AMD Quad-Core CPU). The results show that the proposed algorithm
runs in real-time and is thus suitable for implementation on embedded platforms such as an
FPGA.

3.2.3 Driver detection and body height estimation

Tracking of people using vision sensors is an important requirement for a growing variety of
applications such as activity recognition [83], pedestrian detection in the vehicle surroundings
[84, 85], gait analysis [86] and estimation of anthropometric data like height and size of athletes
or passengers [87, 88, 89]. Cupillard et al. [90] propose a three-stage algorithm to track groups
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Figure 3.3: Block diagram for object detection using background estimation and foreground
detection, shadow compensation and handling of illumination changes.

of people in a metro scene in order to prevent violence or vandalism. Their algorithm is tuned
to recognize abnormal behavior. Detection is based on the extraction of moving regions using
background subtraction, feature extraction such as position, center of gravity, height and width
of an object, and on region classification. An interpretation module merges all features and
detects violence and vandalism on the basis of abnormal behavior.

Another interesting approach is an image-based identification of humans based on their shape
and gait. For this purpose, Collins et al. [91] established a multi-baseline-based method to
identify humans based on their body shape and gait. Identification is performed by a viewpoint-
dependent technique that requires up to 8 cameras. To achieve this, key frames of walking
humans are compared with frames obtained in training sequences. The training sequences in-
clude biometric shape cues such as body height, proportions of the body, stride length and
amount of arm swing. Additional thereto, an increasing effectiveness of personal identification
has been proven by BenAbdelkader et al. [92], when height and the quantification of the bio-
metric parameters of gait are also included in the identification process. In both approaches,
height estimation is performed using a camera network.

Another common approach for estimating body heights is the use of a stereoscopic, camera-
based surveillance system mounted on the ceiling of a room or on the high position of a building.
In this manner, Izumi et al. [93] proposed an algorithm to estimate the height of a person by
estimating the distance between the head of a person and the stereo camera system.

Height prediction using only a single camera was introduced by Bovyrin et al. [94]. They
present a robust method to detect 3D-road maps and human heights using a single perspective
camera. One limitation of this method is the prerequisite of a top-down view to a distant scene.
However, a top-down view of a distant scene is difficult to realize in automotive applications.
Moreover, the road map and the body height can be estimated only up to an unknown scale
factor. To overcome the limitation of unknown scale factors in body height estimation, Danilo
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et al. [88] propose a method to estimate the absolute body height for applications in the forensic
anthropology by using a single camera and fixed reference points in a medical room. Similar
work was done by Criminisi et al. [95]: Using at least one reference height in an unknown scene
and a minimal calibration of the camera (the vanishing point(s) in images must be known), all
other heights in a scene can be derived from this reference height.

Much research has been done for foreground classification, people detection in vehicle sur-
roundings, human identification from body shape and gait and detection of abnormal behavior.
To the best of our knowledge, little work has been done for absolute human body height predic-
tion using a single omnidirectional camera. In particular, little work has been done to estimate
the body height of approaching drivers in the automotive domain in order to ergonomically pre-
adjust the seat position to improve ingress/egress in tight parking lots. State of the art algorithms
for absolute body height estimation have several limitations that make them impractical for au-
tomotive applications. One disadvantage is the use of multiple cameras to obtain the absolute
body height of persons. Due to space and cost constraints, an approach is pursued for this appli-
cation that uses only a single omnidirectional camera attached to each the side-view mirror of
the car. Furthermore, recording training sequences to identify approaching drivers and, hence,
to adjust the seat according to height data stored in the car system is not suitable for automotive
applications. Moreover, it is difficult to position a camera on a commercial vehicle to obtain a
top-down view of a distance scene. Body height estimation up to an unknown scale factor is
feasible to identify abnormal behavior, but is impractical to ergonomically optimize the seat po-
sition for better ingress. Reference points or objects with known height in a scenario overcome
the unknown scale factor problem, but this cannot be realized for any parking situation.

This chapter presents a new method for estimating absolute body heights of approaching drivers
with a single omnidirectional camera. The proposed method overcomes the limitation of un-
known scale factors and avoids the presence of reference points in parking scenes. For this
purpose, a car ground plane is introduced spanned by the four wheels of a car. The distance
of the camera to the car ground plane can be determined during camera calibration and is as-
sumed to be known. Additionally, a ground plane is introduced on which drivers walk straight
ahead towards the car. The absolute height of approaching drivers can be determined, when
the orientation between the camera and the ground plane is available. Unfortunately, this infor-
mation is only partially available due to missing position sensors and due to unknown parking
situations. For this reason, this thesis proposes an efficient algorithm to estimate the orientation
and position of the ground plane relative to the camera using sets of head and foot points from
approaching drivers. With the known orientation of the ground plane and its distance to the
camera, the absolute body heights of approaching drivers are computed.

The rest of this chapter is organized as follows. Background initialization, the background esti-
mator, the shadow detector and an algorithm to compensate illumination changes and to identify
approaching drivers are presented in Section 3.3. In Section 3.4, the mathematical representa-
tion for the most common parking scenarios and a generic, mathematical model are presented.
The generic model is feasible for a wide range of parking scenarios. The results obtained for
driver extraction and body height estimation are presented and discussed in Section 3.5. Finally,
this chapter concludes by briefly outlining some possibilities for future work in Section 3.6.
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3.3 Driver extraction

As discussed in Section 3.2.1 and Section 3.2.2, background estimation was proposed to ex-
tract drivers in panoramic images. The background model used in this thesis is based on the
approach of Karman et al. [71] and Ridder et al. [79]. It is extended to provide better shadow
detection and to be more robust against illumination changes for applications in the automotive
domain. The mathematical details of the background model along with the shadow detector and
a method to account for illumination changes are presented. Furthermore, background initial-
ization is described in Section 3.3.1, and Section 3.3.2 presents the background model that is
based on Kalman filtering [71, 79] to model the dynamics of each background pixel. Pixels are
identified as background or foreground pixels using thresholding. Potential foreground pixels
are classified as valid foreground or as shadow pixels using the NCC and the ZNCC (see Section
3.3.3 and 3.3.4). Finally, a method is proposed that accounts for global illumination changes in
Section 3.3.5.

3.3.1 Background initialization

Many approaches addressing background estimation require the recording of a separate image
from an empty scene to initialize the background model. But this is nearly impossible for
applications in the automotive domain: An example besides many others is parking on a highly
frequented street with many road participants. In the approach of Ridder et al., each background
pixel is initialized with a fixed value that is adapted during a training period using large numbers
of frames. Jacques et al. use median-based background initialization over a large number
of frames. Median-based initialization allows recording of background images in busy-street
scenarios, but it also assumes that pixels contain background content for at least half of the
initialization frames.

Real life experiments demonstrate that this assumption is not necessarily valid for several traffic
scenarios. For this purpose, Farin et al. [96] propose a powerful method to solve the problem of
extracting background images in highly frequented scenarios. The principal idea of their algo-
rithm is to roughly segment each pixel from input frames into foreground and into background.
The segmentation is carried out on small blocks for each pixel position from the input frames.
Farin classifies background content by searching for the subsets of frames that show stable con-
tent within the blocks. In other words, the content of blocks with background varies less than
the content of blocks with foreground. To find the blocks that contain background pixels, the
similarity of block contents over a fixed training period is computed and stored into a Similarity
Matrix for each pixel in an image. This matrix contains the differences (realized with the Sum
of Absolute Differences, SAD) between image content at the block positions for each pair of
frames. Low values in the matrix relate to background regions, whereas high values correspond
to foreground regions.

Each similarity matrix is decomposed into two parts, one that may contain background (low
values) and one that may contain foreground (high values). Then, the background image is com-
puted based on the pixels that contain background content using a median-based algorithm [97].
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(a) Similarity matrix of one pixel position pi (b) Initialized background

Figure 3.4: Similarity matrix obtained for one pixel position pi in a panoramic image (a). Slight
differences between the blocks for each pair of frame are shown as dark, big dif-
ferences between the blocks as bright areas. Estimated background image as an
initialization for the background model (b).

For this application, such segmented background images are used to initialize the Kalman-based
background model (see Section 3.3.2). Further training periods are not required. Although the
method proposed by Farin et al. [96] is very robust for background initialization, it is very
time-consuming due to the block difference calculation using SAD. Following the definition of
SAD, the absolute, pixel-wise differences of the intensities I1(x, y) and I2(x, y) for pixels (x, y)
in a pair of frames (1,2) are computed for a block Bi with size m×m. These differences have
to be computed for each image pair in a set of n frames. This leads to long computation times
for background initialization depending on the number of frames in a training sequence.

For this reason, SAD for block difference calculation is replaced by block averaging. Absolute
differences and the similarity of two blocks in consecutive frames are computed based on the
block averages for each corresponding block. In other words, the average µn(pi) is computed for
each block and is stored for further computations. Previously computed values µn(pi) of blocks
can be reused so that only one block difference computation is necessary for each image pair
in a training sequence. Clearly, nine difference computations for blocks with size of 3x3 pixels
would be required using SAD. In Eq. 3.1, an efficient algorithm based on the block averages
µn(pi) is proposed for computing block differences and entries of the similarity matrices.

t1 : µ1(pi) = mean(Bi(pi))
t2 : µ2(pi) = mean(Bi(pi)) , d1,2(pi) = |µ1(pi)− µ2(pi)| (3.1)

t3 : µ3(pi) = mean(Bi(pi)) , d1,3(pi) = |µ1(pi)− µ3(pi)| , d2,3(pi) = |µ2(pi)− µ3(pi)|
tn : µn(pi) = mean(Bi(pi)) , dj,n(pi) = |µj(pi)− µn(pi)| j ∈ [1, n− 1]

For each pixel position pi in an image of n training frames, the average µn(pi) of a block Bi in
the neighborhood of a pixel pi is determined. Thereafter, the absolute differences of blocks for
each pair of frames are computed using previously computed block-averages µn(pi).

Clearly, the block average µ1(pi) for each pixel in the first frame 1 is computed at time step
t1. At time step t2, the block averages µ2(pi) for each pixel in frame 2 are computed, and
the absolute differences d1,2(pi) are determined using stored block averages µ1(pi). Then, the
results are stored in the similarity matrix with the elements dj,n(pi) = dn,j(pi). At time step
t3, the block averages µ3(pi) are computed, and the absolute differences d1,3(pi) and d2,3(pi)
are determined. Similar to time step t2, the previously determined block averages µ1(pi) and
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µ2(pi) from time step t1 and t2 can be re-used for further processing. However, background
initialization using block averaging is less robust compared to background initialization with
SAD (see Section 3.5.1), but it allows to reuse previously determined block average values
µ(n−1)(pi) · · ·µ1(pi). This way, the computation time of this algorithm is 10 times faster.

Such determined background images serve as an initialization for the Kalman-based back-
ground estimation and foreground detection. The number of frames required for background
initialization strongly depends on the number of foreground objects in the training sequence.
Ten frames would be sufficient to learn the background for empty scenarios and at least 40
frames are required to initialize the background image in highly frequented road scenarios.

3.3.2 Kalman-based background estimation

As discussed in Section 3.2, the thesis used background estimation for extracting objects of
interest from the captured images. The background model is based on the approach of Karman
et al. [71] and has been extended by Ridder et al. [79]. In this section, the Kalman-based back-
ground model proposed by Ridder et al. [79] is presented. The background model considers the
dynamics of the background, e.g. slow illumination changes, and can detect foreground objects
in panoramic images. The underlying Kalman filter theory is well described, e.g. by Anderson
et al. [98] so that the Kalman filter theory is only briefly presented below. Best information of
a system state is obtained by an estimation that explicitly considers noise in the measurement.
Following Eq. 3.2, the estimation of the system state ŝ(ti) at time ti is

ŝ(ti) = s̃(ti) + K(ti)[z(ti)−H(ti)s̃(ti)] (3.2)

and the prediction s̃(ti) at time ti

s̃(ti) = A(ti)ŝ(ti−1) (3.3)

Hereby, A(ti) represents the system matrix and H(ti) the measurement matrix. z(ti) is called
the system input that is required to estimate the unknown system state along with the Kalman
gain K(ti).

In this application, the system input z(ti) represents new intensity values provided by the camera
system. The Kalman gain K(ti) depends on the predicted error covariance and on the system
input and serves as a weighting factor for the system input. In other words, if the measurement
noise is high then the Kalman gain is low due to a high error covariance and vice versa. The
Kalman filter runs with two filtering states that are prediction of the new system state and
correction (estimation) of the prediction using the system input. At the correction state, the
predicted system state is compared with the actually measured system input. The estimation
of the system state is then computed by weighting the difference between the measured system
state and the prediction using the Kalman gain. Thus, measured values get a lower weighting
when their error covariance is high and vice versa [79, 71].

Karmann and Ridder use Kalman filtering to extract the background of images captured by a
stationary camera and model the background dynamics of each pixel as follows: The intensity
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of a pixel at position (x,y) at time t is given by Ix,y(t). The estimated system state of the back-

ground is denoted as Îx,y(t) and its derivative is denoted as ˆ̇Ix,y(t). The system state represents
the background for each pixel in extracted input images and is estimated as follows:[

Îx,y(t)
ˆ̇Ix,y(t)

]
=

[
Ĩx,y(t)
˜̇Ix,y(t)

]
+ Kx,y(t) ·

(
Ix,y(t)−H ·

[
Ĩx,y(t)
˜̇Ix,y(t)

])
(3.4)

Following Eq. 3.3, the prediction Ĩx,y(t) of the system state Îx,y(t) and its derivative ˜̇Ix,y(t) at
time t is given by: [

Ĩx,y(t)
˜̇Ix,y(t)

]
= S ·

[
Îx,y(t− 1)
ˆ̇Ix,y(t− 1)

]
(3.5)

With the system matrix S, the measurement matrix H and the Kalman gain K is:

S =

[
1 s1,2

0 s2,2

]
, H =

[
1 0

]
and Kx,y(t) =

[
k1x,y(t)
k2x,y(t)

]
(3.6)

In [71], s1,2 = s2,2 = 0.7 was used to model the background dynamics. Since the camera returns
only intensity values Ix,y(t), the measurement matrix H is a constant. Following Eq. 3.7 and
Eq. 3.8, the Kalman gain is chosen depending on detected foreground mx,y(t) = 1 or detected
background mx,y(t) = 0. To achieve a classification, a pre-estimation of the next system state
is performed following Eq. 3.7:

mx,y(t) =


1, if

[
d′x,y(t) ≥ thbg

]
∨[

(d′x,y(t) < thbg) ∧
(d′′x,y(t) ≥ thbg)

]
0, if

[
d′x,y(t) < thbg

]
∧[

d′′x,y(t) < thbg

] (3.7)

d′x,y(t) = |Ix,y(t)− Ĩx,y(t)|
d′′x,y(t) = |Ix,y(t)− Î ′x,y(t)|

with Î ′x,y(t) = Ĩx,y(t) + β ·
[
Ix,y(t)− Ĩx,y(t)

] (3.8)

Background and foreground pixels are determined using simple thresholding: However, pixels
whose differences of intensity to the system state are smaller than a fixed threshold (d′ < thbg)
do not necessarily indicate background. For example, shadow pixels may cause a very small dif-
ference of intensity to the system state that might be smaller than the threshold. However, these
pixels must not be classified as background and belongs to foreground. To identify such pixels,
Ridder et al. propose a pre-estimation Î ′x,y(t) of the next system state under the assumption
that pixels with small differences in their intensities to the background belong to background.
However, if the pre-estimated value d′′ is greater than thbg this pixel nevertheless belongs to
foreground. A binary map mx,y(t) represents the segmentation of pixels (1 for foreground and
0 for background), and the Kalman gain k1, 2x,y(t) = α or k1, 2x,y(t) = β is chosen depending
on the binary map mx,y(t) (see Eq. 3.7).

k1, 2x,y(t) =

{
α, if mx,y(t) = 1
β, if mx,y(t) = 0

(3.9)
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3.3.3 Shadow detection

Body height prediction is based on precise extraction of head and foot points of approaching
drivers. Therefore, it is highly recommended to carefully determine the regions of persons in
consecutive images in order to estimate their body heights. Shadow pixels, however, may falsify
the lower body regions and could lead to inaccuracies in body heights when head and foot points
are wrongly estimated. Hence, shadow pixels must be detected and suppressed. The normalized
cross correlation (NCC, [82]) is used as an initial step to detect shadow pixels, and the result is
then refined by the zero mean normalized cross correlation (ZNCC) to handle foreground pixels
with small differences to the background.

Let Ĩx,y(t) be the estimated background image, and let Ix,y(t) be an image captured from
a scene. For each foreground pixel, a template Txy(n, m) is generated in such a way that
Txy(n, m) = Ix+n,y+m(t) for −N ≤ (n, m) < N . t̄ denotes the arithmetical mean of tem-
plate Txy(n, m). Furthermore, let Bxy(n, m) be a corresponding template of the background
in such a way that Bxy(n, m) = Îx+n,y+m(t). Also, b̄ is the arithmetical mean of template
Bxy(n, m). Then, the similarity between the image template Txy(n, m) and the background
template Bxy(n, m) at pixel (x, y) is computed with ZNCC as well as NCC (t̄ = 0, b̄ = 0)
following Eq. 3.10:

ZNCCx,y =
EZRx,y

EZBx,y · EZTx,y

(3.10)

with

EZRx,y =
N∑

n=−N

N∑
m=−N

|(Bxy(n, m)− b̄)||(Txy(n, m)− t̄)|

EZBx,y =

√√√√ N∑
n=−N

N∑
m=−N

(Bxy(n, m)− b̄)2 and (3.11)

EZTx,y =

√√√√ N∑
n=−N

N∑
m=−N

(Txy(n, m)− t̄)2

The term EZTx,y considers the energy of the image template and EZBx,y the energy of the
background template. A pixel may potentially be classified as shadow if the NCC value between
both templates is close to unity and if the energy of the image template ETx,y is smaller than
the energy of the background template EBx,y (see Eq. 3.12). The energies EBx,y and ETx,y

can be determined by calculating EZBx,y(b̄ = 0) and EZTx,y(t̄ = 0).

NCCx,y ≥ thNCC and EBx,y > ETx,y (3.12)

3.3.4 Shadow refinement
Depending on the chosen threshold thNCC with (thNCC < 1.0), many foreground pixels with
small differences to background pixels may be misclassified as shadow pixels. To overcome
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this limitation, the classification of shadow- and nonshadow-pixels has been refined using the
ZNCC. The advantage of ZNCC is light invariance, so that only differences in texture cause
significant changes in its value. Hence, the refinement stage verifies if there are significant
changes caused by changes in textures instead of illumination. Although the ZNCC is light
invariant, image noise (texture changes) influence the ZNCC and cause an offset. This offset
θ can be determined when initializing the background model and must be considered by the
threshold thZNCC . Similarly to the NCC, a pixel belongs to shadow if the ZNCC is close to
the initial value and the energy ETx,y of the image template is smaller than the energy of the
background template EBx,y.

In contrast to the NCC, EZTx,y and EZBx,y represent the energies of the textures from the
background template and from the image template. Thus, the energy of textures from valid
foreground pixels might be lower than the energy of texture from background. This is the
case for large homogeneous objects like trucks that cover a very detailed background such as
brushwood. A pixel may belong to shadow if the energy EZTx,y of the image template is
approximately the same as the energy EZBx,y of the background following Eq. 3.13.

|ZNCCx,y − (1.0− θ)| ≤ thZNCC and

|EZBx,y − EZTx,y| ≤ thcomp and (3.13)
ETx,y < EBx,y

3.3.5 Active light adaptation

Background models that are based on Kalman filtering can follow slow illumination changes
in the background. However, when foreground objects cover the background, illumination
changes in the background cannot be detected. Furthermore, the background model cannot con-
sider sudden illumination changes as it cannot distinguish between sudden illumination changes
or fast moving foreground objects. So there is a need to modify the background model to con-
sider sudden illumination changes in input images. Therefore, every new image is subdivided
into m sub-images fitting the whole image, and the mean gray value for each sub-image is
calculated (see Eq. 3.14):

µ(m, t) =
1

J · I

J/2∑
j=−J/2

I/2∑
i=−I/2

I(px(m) + j, py(m) + i, t) (3.14)

px(m) and py(m) are the center of each sub-image and J , I its image size. The global illumination
change ∆(t) can be detected by calculating the median of all local illumination changes δ(m, t).

∆(t) = median
m

δ(m, t) (3.15)

with
δ(m, t) = µ(m, t)− µ(m, t− 1) (3.16)
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(a) (b)

Figure 3.5: Indoor scenario with walking people captured by an omnidirectional camera (a).
Extracted humans in panoramic images (b).

Since small illumination changes are automatically adapted by the background model, simple
thresholding is introduced in order to avoid modifying the background model too frequently.

∆(t) =

{
0, if ∆(t) < th∆

∆(t), if ∆(t) ≥ th∆
(3.17)

Finally, Eq. 3.5 that predicts the system state for background estimation is modified to consider
illumination changes as follows:[

Ĩx,y(t)
˜̇Ix,y(t)

]
= S ·

[
Îx,y(t− 1)
ˆ̇Ix,y(t− 1)

]
+

[
∆(t)

0

]
(3.18)

Using this approach, the background model can consider slow as well as sudden illumination
changes. Figure 3.5(a) shows an image containing a group of people walking in a complex
indoor environment. The difficulties of this scenario are weak and strong shadows and small
differences between foreground and background. Figure 3.5(b) illustrates the extraction result
on which driver identification and height estimation is based.

3.3.6 Parallelization

For all the proposed techniques, one can see that different pixels may be processed in parallel.
In other words, image rectification, the background estimator, the shadow detector as well as the
illumination compensation can all be run in parallel on a multi-core CPU. As mentioned before,
the algorithm has to work in real-time and hence such parallelization is highly desirable. A
parallelization scheme is useful to speed up the system for time-critical tasks such as detection
of traffic participants or detection of approaching driver. Therefore, original images returned
by the camera subsystem are divided into n sub-images and the same number of threads is
generated to be run on a multi-core platform. After processing each image the results of all
threads must be merged and interpolated (e.g., when an object being detected is split across two
or more sub-images) for further object detection and foot and head point detection algorithms.
Figure 3.6 illustrates the realized parallelization technique.
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Figure 3.6: Parallelization concept of the object detection algorithm. Each input frame is sub-
divided into n-frames and the same number of concurrent threads is generated to
extract road users. The results obtained from each thread are merged by interpola-
tion.

3.3.7 Driver determination and foot/head point extraction

Precise human extraction and torso determination are prerequisites for obtaining highly accurate
body heights of approaching drivers. Based on the torso, head and foot points are extracted and
serve as input for the body height estimation algorithm. In previous sections, the proposed
foreground detection algorithm has been presented that separates foreground objects such as
approaching drivers or cars from background [5]. A classification factor fc is introduced to
distinguish between humans and other foreground objects. Following Eq. 3.19, an extracted
region reg belongs to humans when the classification factor fc is larger than a lower bound
thlow class and smaller than an upper bound thup class.

reg =

{
1 thlow class < fc ≤ thup class

0 otherwise
with fc =

wreg

hreg

(3.19)

The classification factor fc depends on both width wreg and height hreg of detected regions.
Figure 3.7 illustrates an identified driver in a group of detected people walking close to the
vehicle. Since drivers walk straight towards the car, they can easily be identified based on their
distances to the vehicle and based on their trajectory in image coordinates. The distance of
humans to the vehicle is closely related to the position of their regions in images, particularly
to the location of the bottom edge of extracted regions. In other words, bottom edges of human
regions close to the lower image parts mean a short distance to the vehicle and vice versa. Due
to this, the region at the left side of Figure 3.7 with the shortest distance to the car is identified
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Figure 3.7: Identified driver in a group of detected humans. Head points pkh and foot points
pkf are determined based on the torso of drivers.

as the region containing the potential car driver.

In a next step, the torso of potential drivers is estimated by means of a blob-detection algorithm
[99, 100]. Torso estimation allows determining head and foot points of approaching drivers
and overcomes the foot point determination problem of walking people. The problem of using
the lowest point of extracted human regions in images is that physical location of this point
strongly depends on the walking direction of humans. In other words, the lowest point of
humans in images relates to the forward section of foots for approaching and to the heels for
leaving humans. In addition, there is a large difference between these locations that is of up to 30
cm depending on the foot size. This may lead to errors in foot point determination and hence to
errors in height estimation. The torso determination overcomes this problem by extracting foot
ankles when estimating foot points. Based on the torso, head points and foot points in 2D-image
coordinates are determined. The image coordinates of head and foot points are transformed into
corresponding 3D-coordinates pkh, pkf of the camera coordinate system K.

3.4 Driver body height estimation

In this section, a novel method is proposed to estimate the absolute body height of approaching
car drivers to improve ingress in narrow parking lots. Section 3.4.1 introduces the coordinate
systems and its relations to each other that are required for body height estimation. Section 3.4.2
presents a mathematical model that represents standard parking situations i.e., a car that is tilted
with respect to the street surface due to its parking position on a curbstone. Section 3.4.3
introduces a model for a parking scenario where vehicles are parked in inclined positions. A
general, mathematical framework is presented in Section 3.4.4 that combines both the curbstone
and the inclined parking scenario into a general model. Each of these scenarios requires a
particular mathematical solution to precisely determine the absolute body height from foot and
head points of approaching drivers. These points are extracted in panoramic images obtained
from an omnidirectional camera.
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Figure 3.8: Orientation of both the camera and world coordinate system.

3.4.1 Definitions

The omnidirectional camera is integrated with the side-view mirror of the car and provides both
a large vertical and horizontal field of view. The coordinate system K of the omnidirectional
camera is located at the projection center of the mirror and has a fixed, well-known distance L′

to the car ground plane (see Figure 3.8). The car ground plane is defined as the plane spanned
by the four wheels of a car.

Distance L′ is the key prerequisite for absolute height estimation as it overcomes the scale-factor
problem of absolute body height estimation using a single camera only. It may be determined
during extrinsic camera calibration. The z-axis of the camera coordinate system is assumed to
be perpendicular to the car ground plane. Misalignments of its orientation can be detected and
compensated by extrinsic camera calibration. A world coordinate system W is introduced at the
intersection point between the z-axis of the camera coordinate system K and a ground plane.
Moreover, the z-axis of the world coordinate system W is assumed to be perpendicular to the
surface of the ground plane.

The ground plane is supposed to be the plane on which drivers walk straight toward the vehicle.
This ground plane may be coincident with the car ground plane for inclined parking situations
or may be tilted with respect to the car ground plane for curbstone parking scenarios. The reason
why such a ground plane and the world coordinate system are so desirable is that body height
estimation can drastically be simplified due to certain physical constraints.

A distance vector dK = (0 0 − L)T is introduced that starts at the origin of the camera
coordinate system K and ends at the origin of the world coordinate system W. In other words,
L is assumed to be the length of the distance vector dK with respect to the z-axis of the camera
coordinate system K (see Figure 3.8). The length L of vector dK is called the ground distance.
The ground distance depends on L′ and on the tilt of the ground plane with respect to the car
ground plane and is a prerequisite for absolute height estimation using only one camera. L can
be determined by estimating the body heights of approaching drivers (see Section 3.5.3), and can
also be determined by motion stereo-based algorithms (see Section 4). Stereo-based algorithms
are especially required when a car is parked close to a curbstone meaning that there is an offset
∆ between the car ground plane and the ground plane. This offset cannot be determined with
image correspondences only.
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Figure 3.9: Model of a curbstone parking scenario, where a driver walks straight ahead towards
a tilted vehicle.

3.4.2 Curbstone parking scenario – tilted vehicle

The first scenario describes parking situations where drivers walk straight ahead towards a vehi-
cle that is parked on a curbstone. Due to the parking scenario, the car ground plane is tilted with
respect to a horizontally oriented ground plane. Consequently, the camera system K is tilted
along two dimensions with respect to the world coordinate system W located on the flat road
surface. The relation between the camera coordinate system and the world coordinate system
can be expressed by two rotations along the x-axis and y-axis of the world coordinate system
W. Figure 3.9 illustrates a scheme and a geometrical representation of this parking scenario.

Based on the silhouette of approaching drivers, sets of foot-points pkf and head-points pkH in
camera coordinates are extracted. The lengths pkf and pkH are only known up to an unknown
scale factor as a single camera provides the direction of vectors only. Hence, vectors to head-
and foot-points can be described as pkf = r · pN kf and pkh = t · pN kh with ||pN kf || =
||pN kh|| = 1 and r, t ∈ R. The vectors of head and foot points obtained in camera coordinates
can then be transformed into world coordinates following Eq. 3.20

pwf = Rk
w · (pkf − pkL), pwh = Rk

w · (pkh − pkL) with pkH =

 0
0
−L

 (3.20)

The relation between the camera and the world coordinate systems (tilting) is represented by
the rotation matrix Rk

w (see Eq. 3.21).

Rk
w = RT

y (β) ·RT
x (α) =

 cβ sαsβ −cαsβ
0 cα sα
sβ −sαcβ cαcβ

 (3.21)

For the rest of this section, the following notation for the normalized head- and foot-points as
seen by the camera are used: pN kf = (xf

n yf
n zf

n)T (foot points) and pN kf = (xh
n yh

n zh
n)T

(head points), where superscripts f and h indicate the coordinates of foot or head points and n
the corresponding set number. Analogically to the normalized camera coordinates, the world
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coordinates are represented by the following notation: pwf = (Xf
n Y f

n Zf
n)T and pwh =

(Xh
n Y h

n Zh
n)T ∀n ∈ R. Following Eq. 3.22 and Eq. 3.23, Eq. 3.20 becomes:

pwf =

 Xf
n

Y f
n

Zf
n

 =

 r · (cβxf
n + sαsβyf

n − cαsβzf
n)− cαsβL

r · (cαyf
n + sαzf

n) + sαL
r · (sβxf

n − sαcβyf
n + cαcβzf

n) + cαcβL

 (3.22)

pwh =

 Xh
n

Y h
n

Zh
n

 =

 t · (cβxh
n + sαsβyh

n − cαsβzh
n)− cαsβL

t · (cαyh
n + sαzh

n) + sαL
t · (sβxh

n − sαcβyh
n + cαcβzh

n) + cαcβL

 (3.23)

Since drivers walk on a horizontally oriented ground plane, following assumptions can be made
to derive an expression for the absolute driver height. Foot points are assumed to be the lowest
points of approaching drivers, so that the z-component of pwf can be set to zero. Additionally,
the z-component of pwh represents the height h of approaching drivers (see Eq. 3.24).

Zf
n = 0, Zh

n = h (3.24)

Another assumption is a nearly upright posture of drivers during walking: Hence, the x and y
components of the vectors to foot and head points must be identical (see Eq. 3.25).

Xf
n = Xh

n , Y f
n = Y h

n (3.25)

Following Eq. 3.26, the unknown scale factors r and t can be computed as follows:

t = r · cαyf
n + sαzf

n

cαyh
n + sαzh

n

with r =
−cαcβL

sβxf
n − sαcβyf

n + cαcβzf
n

(3.26)

and therefore the height h of approaching drivers following Eq. 3.27:

h = cαcβL ·
(

1− cαyf
n + sαzf

n

cαyh
n + sαzh

n

· sβxh
n − sαcβyh

n + cαcβzh
n

sβxf
n − sαcβyf

n + cαcβzf
n

)
(3.27)

Determination of the camera tilt α, β from foot and head points

The height of approaching drivers can easily be determined when the camera tilt α and β is
available. But this is not the case for real, unknown parking scenarios. However, the camera
tilt α and β can be calculated when sets of vectors to foot and head points are available. Using
Eq. 3.25 and replacing r and t with the expressions in Eq. 3.26, Eq. 3.28 describes a solution for
β that depends only on the coordinates of foot points pN kf = (xf

n yf
n zf

n)T , on the coordinates
of head points pN kf = (xh

n yh
n zh

n)T and on the camera tilt α.

cβ

sβ
=

−(yf
nzh

n − yh
nzf

n)

cα · (xf
nyh

n − xh
ny

f
n) + sα · (xf

nzh
n − xh

nz
f
n)

(3.28)
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Using at least two head and foot points, α can be determined by solving Eq. 3.29:

tan(β) = −
(

cαBn + sαCn

An

)
= · · · = −

(
cαBn + sαCn

An

)
with An 6= 0 (3.29)

with An = (yf
nzh

n − yh
nzf

n), Bn = (xf
ny

h
n − xh

ny
f
n), Cn = (xf

nz
h
n − xh

nz
f
n) and n ∈ R. Eq. 3.30

illustrates a potential solution for camera tilt α based on two head- and foot-points.

tan(α) =
AnBn+1 − An+1Bn

An+1Cn − AnCn+1

(3.30)

3.4.3 Inclined parking scenario – tilted road surface

The first scenario describes parking scenarios where drivers walk straight ahead towards a ve-
hicle parked in an inclined position. For an inclined parking scenario, the car ground plane is
collinear with respect to the ground plane. For this reason, the orientations of the camera system
K and of the world coordinate system W are coincident. Similar to the first scenario, the as-
sumption is made that drivers walk in an upright posture. But contrary to the first scenario, the
upright posture of walking humans is not perpendicular to the ground plane. This tilt is called
driver tilt and can also be expressed by a rotation along two dimensions. The tilt is described
by two tilt angles γ and δ with respect to the orientation of the world coordinate system.

Figure 3.10 illustrates a scheme of the inclined parking scenario. Similarly to the first scenario,
the height of approaching drivers can be derived from extracted sets of head points pN kf and
foot points pN kh in normalized camera coordinates. Their corresponding world coordinates
can be computed following Eq. 3.31:

pwf = r · pN kf + pwL, pwh = t · pN kh + pwL with pwL =

 0
0
L

 (3.31)

where pwL represents the distance between the camera and world coordinate system.

The following notation for the normalized head and foot points as seen by the camera are used.
Foot points are represented by pN kf = (xf

n yf
n zf

n)T , whereas head points are represented by
pN kf = (xh

n yh
n zh

n)T . Analogically to normalized camera coordinates, the world coordinates
of foot and head points are represented by the following notation: pwf = (Xf

n Y f
n Zf

n)T and
pwh = (Xh

n Y h
n Zh

n)T . Eq. 3.32 illustrates the relation between foot and head points in world
coordinates.

pwh = pwf + Rxy ·

 0
0
h

 (3.32)

with

pwf =

 Xf
n

Y f
n

Zf
n

 = r ·

 xf
n

yf
n

zf
n

+

 0
0
L

 and pwh =

 Xh
n

Y h
n

Zh
n

 = t ·

 xh
n

yh
n

zh
n

+

 0
0
L

 (3.33)
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Figure 3.10: Parking situation where a driver walks towards an inclined parked vehicle.

The rotation matrix Rxy (see Eq. 3.34) represents the orientation (driver tilt) of the approaching
driver with respect to the ground plane.

Rxy = Rx(γ) ·Ry(δ) =

 cδ 0 sδ
sγsδ cγ −sγcδ
−cγsδ sγ cγcδ

 (3.34)

Similarly to the curbstone parking scenario, the z-component Z1 of foot-points can be set to
zero. Due to this, scale factor r can be computed following Eq. 3.35.

r = −L/zf
n (3.35)

After replacing r and some reorganization of Eq. 3.32, the following equations can be used to
determine the scale factor t and to estimate the absolute body height h.

− L · xf
n/z

f
n + h · sδ = t · xh

n (3.36)
−L · yf

n/zf
n − h · cδsγ = t · yh

n (3.37)
h · cδcγ = t · zh

n + L (3.38)

The second scale-factor t is obtained by reorganizing Eq. 3.38 and by replacing the scale-factors
r and t in Eq. 3.37 (see Eq. 3.39).

t =
h · cγcδ − L

zh
n

(3.39)

The height of approaching drivers for inclined parking scenarios is then determined following
Eq. 3.40:

h =
−L · (yf

nzh
n − yh

nzf
n)

zf
ncδ(sγzh

n + cγyh
n)

(3.40)

Determination of driver tilt γ, δ from head and foot points

At this point, the absolute driver height h can be computed from the input data from the camera
system when the driver tilt γ and δ is available – but this is not the case for parking scenarios
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due to missing tilt information generated by inertial sensors. On the other hand, the input data
provided by the camera system can also be used to estimate the tilt of approaching drivers. An
arithmetic expression can be found by replacing t and h in Eq. 3.36 so that it depends only on
the driver tilt γ (see Eq. 3.41)

cδ

sδ
=

−(yf
nzh

n − yh
nzf

n)

cγ · (xf
nyh

n − xh
ny

f
n) + sγ · (xf

nzh
n − xh

nz
f
n)

(3.41)

This equation may be used to find an expression for γ. Since γ should not vary when drivers
approach the car, Eq. 3.41 must be valid for all head and foot points pN kh and pN kh. Using at
least two foot and head points, γ may be determined by solving Eq. 3.42

tan δ = −cγB1 + sγC1

A1

= · · · = −cγBn + sγCn

An

with An 6= 0 (3.42)

with An = yf
nzh

n − yh
nzf

n, Bn = xf
ny

h
n − xh

ny
f
n and Cn = xf

nz
h
n − xh

nz
f
n. Finally, Eq. 3.43 express

a solution to compute the angle γ.

tan γ =
AnBn+1 − An+1Bn

An+1Cn − AnCn+1

(3.43)

3.4.4 Generic height model combining curbstone and inclined
parking scenario

In previous sections, algebraical models have been presented describing specific parking sce-
narios such as curbstone parking scenarios (see Section 3.4.2) or inclined parking scenarios (see
Section 3.4.3). Their most important advantage is the analytical determination of the camera tilt
(α, β) and the driver tilt (γ, δ). However, specific mathematical requirements are necessary to
guarantee a valid solution for each set of input data. The input data are normalized vectors to
the head points pN kh and foot points pN kf of approaching drivers obtained from the omni-
directional camera. Furthermore, real life parking scenarios usually combine both the inclined
and the curbstone scenario; for instance when the vehicle is parked on a curbstone at an inclined
road surface (see Figure 3.11). In general, one of the presented parking models dominates in
each parking scenario, but neglecting the other one may lead to inaccuracies in height estima-
tion (see Section 3.5.3) up to 20 cm. Therefore, a generic, arithmetic model considering both
parking scenarios is highly desirable to obtain accurate body heights and is presented in this
section.

Based on the extracted torso of identified drivers, sets of foot points pkf and head points pkh

in camera coordinates are determined. The camera provides the direction of the vectors only
and the lengths of pkf and pkH are only known up to an unknown scale factor. Hence, vectors
to head and foot points can be represented as pkf = r · pN kf and pkh = t · pN kh with
||pN kf || = ||pN kh|| = 1 and r, t ∈ R. The vectors to head and foot points are then transformed
into world coordinates following Eq. 3.44

pwf = Rk
w · (pkf − pkL), pwh = Rk

w · (pkh − pkL) with pkH =

 0
0
−L

 (3.44)
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Figure 3.11: General model representing all potential parking situations. The model combines
the tilted parking situation (α, β, see Figure 3.9) and the inclined parking situation
(γ, δ, see Figure 3.10).

Hereby, the rotation matrix Rk
w represents the camera tilt of parked vehicles (see Eq. 3.45).

Rk
w = RT

y (β) ·RT
x (α) =

 cβ sαsβ −cαsβ
0 cα sα
sβ −sαcβ cαcβ

 (3.45)

For the rest of this section, the following notations for the normalized head- and foot-points as
seen by the camera are used: pN kf = (xf

n yf
n zf

n)T and pN kf = (xh
n yh

n zh
n)T where super-

scripts f and h indicate foot and head point coordinates and n the corresponding set number.
Analogically to the normalized camera coordinates, the world coordinates are represented by
the following notation: pwf = (Xf

n Y f
n Zf

n)T and pwh = (Xh
n Y h

n Zh
n)T ∀n ∈ N.

Analogically to the curbstone model and following Eq. 3.46 and Eq. 3.47, Eq. 3.44 becomes:

pwf =

 Xf
n

Y f
n

Zf
n

 =

 r · (cβxf
n + sαsβyf

n − cαsβzf
n)− cαsβL

r · (cαyf
n + sαzf

n) + sαL
r · (sβxf

n − sαcβyf
n + cαcβzf

n) + cαcβL

 (3.46)

pwh =

 Xh
n

Y h
n

Zh
n

 =

 t · (cβxh
n + sαsβyh

n − cαsβzh
n)− cαsβL

t · (cαyh
n + sαzh

n) + sαL
t · (sβxh

n − sαcβyh
n + cαcβzh

n) + cαcβL

 (3.47)

Eq. 3.48 describes a relation between foot and head points in world coordinates, whereas the
z-component of the foot point vectors in world coordinates can be set to zero.

pwh = pwf + Rxy ·

 0
0
h

 =

 Xf
n

Y f
n

0

+ Rxy ·

 0
0
h

 =

 Xh
n

Y h
n

Zh
n

 , (3.48)

The rotation matrix Rxy represents the tilt of approaching drivers relative to the ground plane
(see Eq. 3.49).

Rxy = Rx(γ) ·Ry(δ) =

 cδ 0 sδ
sγsδ cγ −sγcδ
−cγsδ sγ cγcδ

 (3.49)

81



3 Driver body height estimation

By setting Zf
n to zero, the scale-factor r can be computed following Eq. 3.46:

r = − L · cαcβ

sβxf
n − sαcβyf

n + cαcβzf
n

(3.50)

The unknown scale factor r in the Xf
n , Y f

n components of Eq. 3.46 can be replaced by Eq. 3.50.
The new expression for the Xf

n and Y f
n components can be inserted into Eq. 3.48 to obtain three

new equations (see Eq. 3.51, Eq. 3.52, Eq. 3.53). These equations can be used to determine for
obtaining a new expression to the body height.

t · (cβxh
n + sαsβyh

n − cαsβzh
n) = −cαcβL · (cβxf

n + sαsβyf
n − cαsβzf

n)

sβxf
n − sαcβyf

n + cαcβzf
n

+ sδh (3.51)

t · (cαyh
n + sαzh

n) = − cαcβL · (cαyf
n + sαzf

n)

sβxf
n − sαcβyf

n + cαcβzf
n

− cδsγh (3.52)

t · (sβxh
n − sαcβyh

n + cαcβzh
n) + cαcβL = cδcγh (3.53)

The second scale factor t can be determined by solving Eq. 3.53 as follows:

t = − −cδcγh + cαcβL

sβxh
n − sαcβyh

n + cαcβzh
n

, (3.54)

The body height h is then determined by replacing the scale factor t in Eq. 3.51 with Eq. 3.54
and by solving Eq. 3.51. Following Eq. 3.55, the body height can be computed from a set of
foot- and head-points obtained from the camera system if the camera tilt α, β and the driver tilt
γ, δ are available.

h =
cαcβL(cαC1 − sαB1)

(sβxf
n − sαcβyf

n + cαcβzf
n)
· ...

· 1

[sδ(sβxh
n − sαcβyh

n + cαcβzh
n)− cδcγ(cβxh

n + sαsβyh
n − cαsβzh

n)]
(3.55)

with

B1 = xf
ny

h
n − xh

ny
f
n

C1 = xf
nz

h
n − xh

nz
f
n

3.4.5 Estimation of camera tilt (α, β) and driver tilt (γ, δ)

In contrast to the curbstone and inclined parking scenario, it is difficult to analytically derive
expressions to estimate the camera tilt α, β and the driver tilt γ, δ from a set of foot points
pN kf and head points pN kh. The reason for that is that camera and driver tilt mathematically
depend on each other and that it is hardly possible to separate them into dedicated equations
describing the camera tilt and the driver tilt only. For this reason, the strategy for overcoming
this problem is to numerically minimize a model-based function f(α, β, γ, δ,pkf ,pkh) to obtain
the best guess for α, β, γ, δ from the input data. Ideally, the minimization function should
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become zero for sets of head and foot points if the estimated camera and driver tilts best match
with the real camera and driver tilts (see Eq. 3.56).

min
α,β,γ,δ

||f(α, β, γ, δ)|| ⇒ f(α, β, γ, δ) → 0 (3.56)

In other words, the input data sets depend on the camera tilt and the driver tilt. Therefore, a min-
imization function f(α, β, γ, δ) can be found that has a global minimum when the numerically
estimated values for α, β, γ and δ best match with the real tilt values.

One potential candidate for this minimization function f(α, β, γ, δ) is the height difference func-
tion computed for two or more input data sets. The height h of approaching drivers must be
approximately constant for any set of input data. The differences between the estimated body
heights computed for two or more input data sets become zero. Eq. 3.57 expresses this relation,
whereas i represents the index of one input data set.

fhd(α, β, γ, δ) = ||hi − hi+1|| ∀i ∈ N (3.57)

The required height h is computed based on the function expressed by Eq. 3.55. However, this
minimization function is not recommended because of ambiguities of driver tilt γ. γ effects
equation Eq. 3.55 within the term cos(γ), so that it is not possible to differentiate between
positive or negative solutions for γ. Furthermore, the trigonometrical terms related to the cam-
era tilt α and β dominate and lead to good minimization results for the camera tilt, but to worse
minimization results concerning the driver tilt.

A better minimization function f(α, β, γ, δ) has been derived by stacking the expressions for
scale-factor t obtained in Eq. 3.54 for the height h obtained in Eq. 3.55 into Eq. 3.52. Eq. 3.58
expresses a new minimization function fhm = fhm(α, β, γ, δ) to overcome ambiguities in the
determination of γ. Furthermore, a more robust solution for α, β, γ and δ can be found during
the minimization process due to a better balanced presence of trigonometrical terms related
to camera and driver tilt. Another advantage of this expression is its capability to estimate a
solution for camera tilt and driver tilt without any knowledge of the ground distance L between
the camera and the ground plane. The input data sets pN kf and pN kh depend on the camera
and driver tilt. Therefore, the minimization function becomes zero if the estimated camera tilt
and driver tilt best match with the real camera and driver tilt.

fhm =

∣∣∣∣A1
i

D1
i

+
cδsγ(cαC1

i − sαB1
i )

D1
i (sδD

2
i − cδcγEi)

+

(
cδcγ(cαC1

i − sαB1
i )

D1
i (sδD

2
i − cδcγEi)

− 1

)
· A2

i

D2
i

∣∣∣∣ !
= 0 (3.58)

with:
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i + sαzyf
i

A2
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i
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i y
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i y
f
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C1
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i z
h
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i z
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i
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i 6= 0
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i + sαsβyh
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i
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and (sδD2
i − cδcγEi) 6= 0. Subscript i represents the actual index of an input data set that con-

sists of the foot point coordinates (xf
i y

f
i zf

i )T and head point coordinates (xh
i y

h
i zh

i )T . Another
advantage of Eq. 3.58 is that one set of input data would theoretically be sufficient to deter-
mine camera and driver tilt by minimizing Eq. 3.58. However, at least 32 input data sets are
recommended to reduce the influence of noise.

When dealing with linear equation systems, least-square algorithms may be used to obtain so-
lutions for mathematical problems that are based on multiple input data sets. For that purpose,
a general procedure is to split the minimization problem into the following form Ax ≤ b so
that x = (α β γ δ)T . But this is not possible due to the highly nonlinear minimization term
(see Eq. 3.58). As an alternative, solutions for nonlinear terms can be found by solving a multi-
objective minimization problem. In this context, for this problem, the basic idea is to solve a set
of objectives simultaneously by formulating this problem as a goal attainment problem intro-
duced by Gembicki [101]). The goal attainment problem of Gembicki [101] is briefly presented
below.

minimize
x,θ

θ such that


F(x)−weight · θ ≤ goal

ceq(x) = 0

lb ≤ x ≤ ub

(3.59)

The variables α, β, γ, δ are the entries of vector x = (α, β, γ, δ)T . The advantage of this mini-
mization method is that objectives fhm(xi) can be defined for each input data set i ∈ N and that
an appropriate solution can be found minimizing all objectives simultaneously.

In other words, all objectives F(x) = {fhm(x1), fhm(x2), ..., fhm(xn)} are simultaneously
solved in least square sense. Furthermore, design goals goal = (goal1, goal2, ..., goaln) are
introduced that relate to the number of objectives F(x). goal can also be understood as a set
of values that objectives F(x) should attain during minimization. Vector weights allows the
objectives to be over- or underachieved. Gembicki [101] proposed the weighting coefficients
weight = (w1, w2, ..., wn) to control the relative degree of the objectives’ over or under at-
tainment. This is important since it is sometimes not known whether the objectives reach the
goals (under attainment) due to the strong noise of the input data provided by the camera. Addi-
tionally, constraints can be introduced to limit the search area – such as to define a lower bound
lb or an upper bound ub – and to define auxiliary conditions such as ceq(x) in order to obtain
better convergence, with ceq(x) = |h(xi) − h(xi+1)| (see Eq. 3.57). Sequential quadratic pro-
gramming (SQP) [102, 103, 104] method is used for minimization. The minimization algorithm
proposed by Gembicki [101] yields highly precise results, but the limitation of this concept is
the estimation of local solutions for camera tilt α, β and driver tilt γ and δ only.

Moreover, initial points x0 = (α0 β0 γ0 δ0)
T have to be determined close to the global minimum

to guarantee convergence of the minimization scheme into the global minimum of Eq. 3.58
for any input data set. Figure 3.12 illustrates a simulated characteristic of the 4-dimensional
minimization function fhm(x) for fictive camera and driver tilt xtilt = (0.1 − 0.1 0.1 − 0.1)T .
In particular, Figure 3.12(a) illustrates the characteristic of fhm assuming γ = 0.1 and δ = −0.1.
It can be seen that fhm has many local minima and only one global minimum. Choosing wrong
initial points leads the function to converge into one of the local minima.
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Figure 3.12: Local and global minima of the minimization function for tested tilts a:) γ =
0.1, δ = −0.1 and b:) α = 0.1, β = −0.1 (Unit [rad]).

Similarly to Figure 3.12(a), Figure 3.12(b) shows the characteristic of fhm that depends on γ
and δ under the assumption of constant values for α = 0.1 and β = −0.1. Additionally, in
Figure 3.12(b), it can be seen that there is only one global minimum at (0.1,−0.1) for fhm.
However, the gradient in direction of δ is very low and may lead to a slow convergence into the
global minimum. For these reasons, it is highly recommended to choose initial points x0 close
to the global minimum.

The algorithm solving the multi-objective goal attainment problem is very time consuming.
Therefore, it is highly recommended to test only a few initial points. Experiments show that
good minimization results can be achieved for about 12 initial points that have been chosen
close to the global minimum. Therefore, this thesis proposes an algorithm to find appropriate
initial points x0 that are located close to the global minimum on the one hand and that reduce
the search area for minimization on the other hand. Figure 3.13 illustrates a block diagram of
the proposed algorithm to find appropriate starting points. Intermediate iteration stages of this
algorithm are illustrated in Figure 3.14.

First, the maximum search area for both the camera tilt α, β and the driver tilt γ, δ is defined
and a fixed number m of initial points is uniformly spread over the whole search area (see
Figure 3.14(a), Figure 3.14(d)). Thereafter, each initial point x0i is tested for being a potential
starting point by stacking it into the minimization function fhm. Results are computed for each
initial point and the best n initial points are selected by choosing the ones that result within
values close to zero for fhm(x0i). As a next stage, the algorithm checks whether the search area
has been modified or not. This might be the case if all best initial points are located within a
small area. A new search area for both camera and driver tilt is defined and the same number m
of initial points is uniformly spread over the whole search area to potentially find better starting
points (see Figure 3.14(b), Figure 3.14(e)). The algorithm repeats this iteration stage (Inner
Loop, see Figure 3.13) until the maximum number of iterations has been exceeded and there are
no significant changes by modifying the search area. Most of n best initial points selected last
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Figure 3.13: Block diagram of the algorithm to determine initial points.
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Figure 3.14: Starting point optimization to find appropriate initial points for estimating camera
tilt α, β (a,b,c) and driver tilt γ, δ (g,d,e) (Unit [rad]).

are located close to the global minimum and serve as an input to solve the multi-objective goal
attainment problem.

Figure 3.14(c) and Figure 3.14(f) illustrate the graphical results x = (α, β, γ, δ)T for an ex-
emplary minimum at (−0.31 0.37 − 0.39 0.22). The algorithm is repeated with an increased
number of initial points m to find better initial points to minimize fhm if the global minimum
has not been detected.

3.4.6 Fast estimation of camera tilt (α, β) and driver tilt (γ, δ)

Camera and driver tilt estimation by solving a multi-objective goal attainment minimization
problem leads to very precise results but the time for execution is very long and may take up
to 30 seconds. Studies illustrated a maximum time of 5 seconds that is available to estimate
the height of approaching drivers. This is the time between activating the car door system by a
remote key and the first contact with the outer door handle for normal ingress situations. Hence,
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3.4 Driver body height estimation

there is a need for an efficient implementation to provide fast estimation of the camera tilt and
driver tilt. For this reason, a standard minimization problem can be solved for input data sets
i ∈ N using a Levenberg-Marquardt minimization algorithm [51, 52].

min
α,β,γ,δ

n∑
i=1

f2
i (α, β, γ, δ) (3.60)

Lourakis provided a fast C/C++ implementation of the Levenberg-Marquardt algorithm [105].
Camera and driver tilt estimation consists of two processing stages. The camera tilt is initially
determined by minimizing the function fhd(α, β, γ, δ) = ||hi − hi+1|| with the height function
hi (see Eq. 3.55). In Eq. 3.55, the camera tilt dominates and is suitable for being estimated as
an initial guess for further minimization stages. Thereafter, the algorithm estimates camera and
driver tilt by iteratively minimizing function fhm (see Eq. 3.58) using the initial guess for α and
β. Results of the second stage are refined by an iteration process that stops when there are no
significant changes in the current estimation of (α β γ δ) compared to previous iteration stages.

3.4.7 Ground distance estimation

The camera and driver tilt can be estimated without any knowledge of the ground distance L.
The ground distance is the length of the distance vector between the camera and the world
coordinate system (see Section 3.4.1). This is an advantage, on one hand, but this is also a
drawback, on the other hand, as L cannot be determined during the pose estimation process.
Moreover, the ground distance L influences Eq. 3.56 as a scale factor: This scale factor is
important to precisely estimate the body height of approaching drivers and overcomes the scale
factor problem for height estimation using one camera only.

The ground distance L can be determined with the calibrated distance L′ between the origin of
the camera coordinate system and the car ground plane and the estimated camera tilt (α, β)T ,
and mainly depends on the actual parking scenario. A prerequisite for estimating L from L′ and
the camera tilt is that at least one of the car’s wheels has contact to the ground plane. When
the vehicle is correctly parked in the direction of travel, the assumption can always be made
that at least one of the car’s wheels – usually one on the driver side – has contact to the plane
road surface. The road surface is identical with the ground plane if an approaching driver walks
straight towards the car on the road (see Figure 3.11).

For such parking situations, L can be computed with the help of L′ and the camera tilt (α, β). In
another parking scenario, a vehicle is parked on the road surface close to the curbstone and co-
drivers approach on a curbstone. In this case, none of the wheels has contact with the ground
plane so that there is an unknown offset ∆ between the wheels and the ground plane. This
unknown offset can be considered in L but cannot be determined using a single omnidirectional
camera only. Hence, two mathematical descriptions for two parking scenarios must be taken
into account: One for scenarios where at least one wheel has contact with the ground plane and
one for scenarios where drivers walk straight toward the car on an elevated ground plane (such
as curbstone).
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Wheel-based ground distance estimation

If at least one car wheel has contact with the ground plane, L can be computed using the cam-
era tilt (α, β) and the calibrated distance L′. As mentioned in Section 3.4.1, L is the length
of the distance vector between the origin K of the camera coordinate system and the origin of
the world coordinate system W. The origin W of the world coordinate system is defined as
the intersection point of the z-axis of the camera coordinate system and the ground plane (see
Figure 3.8 and Figure 3.15).

A new coordinates system C – called car wheel coordinate system is introduced whose origin
is located at the boundary point of the wheel and the ground plane. The corresponding wheel
that has contact with the ground plane can be determined with the estimated camera tilt. The
orientation of the car wheel coordinate system C is assumed to be coincident with the world co-
ordinate system W. The position of the camera system K relative to one of the car wheels can
precisely be determined during extrinsic camera calibration. Misalignments of the camera can
also be detected by the calibration procedure and be considered in image rectification. The left
side of Figure 3.15 illustrates the location of the omnidirectional camera relative to one of the
car wheels. The location of the car wheel coordinate system C for a parked car (tilt β ≥ 0,
curbstone parking scenario) is illustrated on the right side of Figure 3.15. It depends on the
camera tilt (α, β) and has to be placed into the car wheel that has contact to the ground plane.

Let pcK = (0, 0,−L′)T be the distance vector beginning at the camera system K in direction
of the world coordinate system W. Furthermore, let pcC = (kx, ky, L

′)T be a vector in the
direction of the camera coordinate system K beginning at the car wheel coordinate system C.
Both vectors are related to the car wheel coordinate system C and kx and ky are assumed to
be known. Then, a straight line g can be computed with respect to the z-axis of the camera
coordinate system K beginning at the center of the camera coordinate system (see Eq. 3.61).

g : r = p′
cC + λ · p′

cH , λ ∈ R (3.61)

with p′
cC = (cCx, cCy, cCz)

T = RW
K · pcC , p′

cK = (cKx, cKy, cKz)
T = RW

K · pcK and

RW
K = Rx(α) ·Ry(β) =

 cβ 0 sβ
sαsβ cα −sαcβ
−cαsβ sα cαcβ

 . (3.62)

Hereby, the straight line g is defined in car wheel coordinates. The origin pwO of the world coor-
dinate system W is defined as the intersection point of the straight line g with the ground plane
beginning at the origin of the camera coordinate system with respect to its z-axis. Therefore,
length L is the length of the straight line g and can be determined as follows.

pwO =

 Ox

Oy

0

 =

 cCx

cCy

cCz

+ λ ·

 cKx

cKy

cKz

 (3.63)
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Figure 3.15: Location of the omnidirectional camera relative to one of the car wheels (left). Lo-
cation of the coordinate systems for a parked car (tilt β ≥ 0, curbstone parking sce-
nario). The location of the car wheel coordinate system C depends on the camera
tilt (α, β) has to be placed into the car wheel that has contact to the ground plane.

With λ = −cCz/cKz, the distance L can be computed following Eq. 3.64:

L = ||pwO − p′
cC || (3.64)

Depending on the parking scenario and on the camera tilt (α, β), the components kx and ky of
vector pcC can be computed for cameras attached to the driver side of a car following Eq. 3.65
and for cameras attached to the co-driver side of a car following Eq. 3.66. Additionally, the
orientation of the camera coordinate system at the co-driver side is assumed to be coincident
with the camera coordinate system of the driver side (see Figure 3.15), whereas ht represents
the half diameter of the car wheel and s(α) = sin(α).

pcC driver =

{
(d4 − hts(β), d1 + hts(α), L′)T for α ≥ 0 , wheel 1
(d4 − hts(β),−d2 + hts(α), L′)T for α < 0 , wheel 3

(3.65)

pcC co−driver =

{
(−d4 + hts(β), d1 + hts(α), L′)T for α ≥ 0 , wheel 2
(−d4 + hts(β),−d2 + hts(α), L′)T for α < 0 , wheel 4

(3.66)

Ground distance estimation using ambiance information

If there is an offset ∆ between the car wheel coordinate system and the ground plane, L cannot
be determined with the algorithm presented above. Then, 3D-ambiance information – in partic-
ular 3D-ambiance information of the ground plane – may be obtained to determine the distance
L. For example, a motion stereo algorithm can generate distance information using a single
camera algorithm.

Let pk
i , i ∈ N be vectors with known length to at least three points on the ground plane. These

vectors are obtained from the omnidirectional camera and are noted in the camera coordinate
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system K. These vectors describe a plane E on which each point can be determined with the
scale factors r and t of the vectors following E : ek = pk

1 + r · (pk
1 − pk

2) + t · (pk
1 − pk

3). The
distance L is defined as the length of the vector pk

D between the origin of the camera coordinate
system and the intersection point in E with respect to the z-axis of the camera system. Then, pk

D

can be described as pk
D = (0 0 − L)T and the length L can be determined by solving Eq. 3.67

as follows:

E : pk
D = pk

1 + r · (pk
1 − pk

2) + t · (pk
1 − pk

3)
!
=

 0
0
−L

 (3.67)

Eq. 3.67 can be solved in least square sense if more than three vectors pk
i are available. This

way, the influence of noise in pk
i can be reduced and leads to a more precise determination

of L. With known camera tilt and driver tilt, the body height of approaching drivers can be
computed from input data following Eq. 3.55. Figure 3.16 illustrates images of two real life
parking scenarios where one car is parked on the road surface and one is parked close to a
curbstone. For the later parking situation, the curbside is identified and indicates the need to
estimate the height of the curbstone – the unknown offset ∆ – using stereo techniques. In this
application, the system returns a default value for body height if 3D-height information of the
curbstone is not available.

3.4.8 Body height estimation and refinement

The input data sets obtained from real parking scenarios are noisy and may contain many out-
liers. Estimation of the body height that is based on noisy input data without any refinement
stage may lead to imprecise results. Therefore, a refinement algorithm is proposed to remove
outliers in the input data and, hence, to improve body height estimation. Figure 3.17 illustrates
the block diagram of the proposed refinement algorithm.

The algorithm computes body heights hi for all input data sets i using the camera tilt, the driver
tilt and the ground distance that have all been estimated in previous processing stages. Based
on single height values, the algorithm computes a mean height hmean that is used to identify
outliers.

Then, the algorithm removes input data sets whose estimated height values differ from the
estimated mean height hmean larger than a fixed difference dhi = |hi − hmean| > δthres · hmean.
Hereby, a good value to identify outliers is δthres = 20% of the mean height. The remaining
input data sets are reused to refine camera tilt, driver tilt, the ground distance L and the body
heights. The refinement process stops if there is no modification of the input data sets compared
to previous iteration steps and if the maximum number of iterations has been exceeded.
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Figure 3.16: Left: Parking on the ground plane. Right: Parking close to the sidewalk. The
curbside of the sidewalk may be used to identify parking situations that have an
offset ∆ between the ground plane and the car ground plane.

Figure 3.17: Block diagram of the proposed body height estimation and refinement algorithm.

3.5 Results

In this section, the performance of the proposed people extraction algorithm, the proposed cam-
era tilt and driver tilt estimation and height estimation algorithm are evaluated. This evalua-
tion has been run in terms of accuracy, quality of people extraction, quality of camera tilt and
driver tilt estimation and number of iterations required for the minimization functions by means
of several experimental results on real and simulated image data. Section 3.5.1 presents the
results of the proposed people extraction algorithm. Results of camera tilt and driver tilt deter-
mination are presented in Section 3.5.2 and results of the body height estimation algorithm are
presented in Section 3.5.3.

3.5.1 People extraction

To verify and to evaluate the Kalman-based people extracting algorithm with its extension for
better shadow detection and illumination compensation (see Section 3.3), experiments have
been conducted in complex environments containing weak and strong shadows as well as
small differences between foreground and background using an omnidirectional vision system
(ODVS). Image rectification was used to transform the captured images into panoramic images
of size 480 × 204 pixels that are used to test the proposed algorithms under various conditions
(dark and light regions, image noise and different resolutions due to image rectification and
interpolation).
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Quality of background initialization

In this section, the results on background initialization are presented. To compare different
methods for background initialization, the background quality Q (see Eq. 3.68) is introduced:
The background quality is defined as the ratio between the number of correctly extracted back-
ground pixels NBackground and the number of ground truth pixels NGroundtruth. A valid back-
ground pixel pbi is a pixel that has a maximum difference d = |pbi − pbgi| ≤ THRES ∀i ∈
[1, n] to the corresponding ground truth background pixel pbgi, where THRES = 5 was chosen
for the proposed people detection application.

Qbackground =
NBackground

NGroundtruth

(3.68)

Training sequences from real life parking scenarios with many non stationary foreground ob-
jects were generated to evaluate the usability of the background initialization. Figure 3.18(a)
illustrates the percentages of foreground pixels in frames from a chosen initialization sequence.
Due to the large field of view of the camera, so many foreground objects in images are quite
common for highly frequented road scenarios.

The background image is estimated using a block similarity matrix (SM) (see Section 3.3.1)
whose entries are determined by calculating the similarity between the pixels (in a block) for
each pair of frames. To speed up the execution time, averaging instead of SAD for block
differencing was used. However, the quality of initialized background images using averaging
is lower compared to the background image based on SAD (see Figure 3.18(b)), but experiments
demonstrated a very fast adaptation of wrongly initialized background pixels.

Figure 3.18(c) and Figure 3.18(d) compare the method for background initialization based on
averaging to the median-based [82] and to the Kalman-based [79] initialization. The initial-
ization process started at different frames of the training sequence for a different number N of
input images. The comparison demonstrates that at least 40 images are enough for SM-based
background initialization compared to other methods where more images are needed for better
initialization results. Thereby, the challenge for the other methods is the large number of pixels
containing foreground content for more than half of input frames.

Experiments were also conducted to analyze the performance of background initialization in
the presence of heavy snow. Fig. 3.19 illustrates training images of a snowy scenario (with
highlighted snowflakes) and the resulting initialized background images. Simulations demon-
strated the same performance for rainy scenarios. Thus, the proposed background initialization
is highly robust against heavy snow and heavy rain.

Detection of shadow pixel candidates

To detect small differences in intensity between foreground and background objects, the thresh-
old thbg (see Eq. 3.8) must be low. An experimentally obtained value was thbg ≥ 5 that allows
the detection of small intensity differences, but still many shadow pixels and noise are detected.
Figure 3.20 illustrates the result of foreground detection (BG/FG) for one pixel over time using
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Figure 3.18: Number of image pixels containing foreground relative to the total number of im-
age pixels (a). Differences in the quality using SAD and averaging (b). Quality of
the obtained background images for a different number of training images started
at different frames of the training sequence (c,d).

NCC and ZNCC. NCC was useful to pre-estimate shadow pixels, but valid foreground pixels
are often misclassified as shadow pixels which can be seen on the noisy characteristic for the
foreground (BG/FG NCC). ZNCC overcomes these limitations by taking textural changes into
account, so that foreground pixels are not misclassified as background. The result is a smoother
characteristic of the foreground/background values (BG/FG ZNCC).

Figure 3.21 compares the results of the proposed shadow detection to the shadow detection al-
gorithm proposed by [79]. Ridder et al. assume that weak shadows have the same characteristic
as illumination changes that may be adapted into the background. Therefore, their algorithm au-
tomatically increases the threshold for foreground detection using the variance (see Figure 3.21,
variance) of the estimated background values over time. The threshold is high if the variance of
the estimated background values (e.g. caused by shadows) is high. However, pixels from small
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Figure 3.19: Image sequence to initialize the background for a snowy scenario (highlighted
snowflakes) and the initialized background image.
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Figure 3.20: Characteristic of NCC and ZNCC from an image pixel (Top). Classification of
foreground (FG/BG = 1/0) using NCC and the refinement using ZNCC (Middle
and Bottom). ZNCC can better distinguish valid foreground from shadow.

foreground objects – such as short drivers who are far away from the car – also cause a high
variance and could be suppressed (see frames 160-175).

Strong shadows cannot be identified as they are detected as foreground. Once detected as fore-
ground it is impossible to differentiate between shadow and foreground (see frames 115-130).
Increasing the threshold up to 15 may suppress strong shadows, but foreground objects with
small differences to the background may be suppressed as well. Shadow detection based on
NCC and shadow refinement based on ZNCC allow the use of a small threshold to extract fore-

94



3.5 Results

50 65 80 95 110 125 140 155 170 185 200
40

50

60

70

80

90

In
te

ns
ity

 

 

Pixel
Background
Threshold

50 65 80 95 110 125 140 155 170 185 200
0

2

4

6

V
ar

ia
nc

e

50 65 80 95 110 125 140 155 170 185 200

0.6

0.8

1

Z
N

C
C

50 65 80 95 110 125 140 155 170 185 200
0

0.5

1

Frames

F
G

/B
G

 

 

GT
FG

Foreground

Increasing Variance

Detected Shadow
Detected Object

Small Foreground 
ObjectIncreasing 

Threshold
Shadow

Figure 3.21: Image pixel over time with large and small foreground objects and strong shadow.
The threshold containing information of the variance of background pixels over
time is used to classify foreground or background pixels (Top). The characteristic
of the variance for threshold adaptation proposed by Ridder et al. and the proposed
shadow refinement technique (Middle). Foreground classification and shadow de-
tection (FG/BG = 1/0) using the approach of Ridder et al. (dashed line) and the
proposed approach (solid line, Bottom).

ground objects (see Figure 3.21, ZNCC) and is suitable for eliminating strong shadow borders
that may be detected as foreground.

Illumination changes and background adaptation

Further experiments are conducted to analyze the capability of the proposed algorithm to com-
pensate and to adapt illumination changes into the background model. Figure 3.22 illustrates
experiments with various types of illumination change such as sudden or slow illumination
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Figure 3.22: One pixel and the detected foreground over time (reference) (a). Misclassified
foreground pixels caused by fast illuminations changes (b). Misclassified fore-
ground pixels caused by slow illuminations changes (c). Adaptation of fast and
slow illumination changes (d).

changes. Figure 3.22(a) presents a reference characteristic of the background for one pixel.
Figure 3.22(b) and Figure 3.22(c) illustrate various characteristics of the background values
for one pixel position which are disturbed by sudden and slow illumination changes. Exper-
iments show that the background model considers slow illumination changes, even when the
background was covered for a short time and when illumination changes were not too large
(see Figure 3.22(c), frames 0− 100). Sudden illumination changes, which are larger than thbg,
cause wrong foreground information (see frames (280 - 310) and (380 - 400)). Finally, Fig-
ure (3.22(d)) demonstrates that illumination changes can successfully be compensated if they
are considered by the background model (see Eq. 3.18).

Experiments were also conducted to find the optimal number of search windows (NoW) to
detect global illumination changes. The number of search windows must be chosen so that the
influence of illumination changes caused by foreground objects is minimized (see Eq. 3.16).
A test profile of illumination changes (IC) was generated and tracked using a different number
of search windows. For that purpose, a test sequence of panoramic images under different
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Figure 3.23: The more search windows (NoW) can be used for detecting illumination
changes(IC), the better is the detection result. Good results give a NoW of 60 -
90.

illumination conditions following the profile of the illumination changes was generated and the
illumination changes were detected using a different number of search windows. Experiments
showed that at least 60 search windows were necessary to track the light profile sufficiently.
The main problem of less than 60 search windows is that foreground objects lead to lighting
changes which influence the detection of illumination changes.

This influence is almost suppressed using approximately 90 NoW. In Figure 3.23, the results of
tracking the test profile using a different number of search windows were presented. This thesis
also derived from the experiments that one search window should not be smaller than (15× 15)
pixels because of an increasing influence of image noise for smaller window sizes.

Validation of foreground pixels

Not all detected foreground pixels need to be valid (true positives = t.p.), i.e., there might also
be false positives. For example, shadow pixels are often misclassified as valid foreground (false
positives = f.p.). On the other hand, pixels having small differences to background can falsely
be classified as background pixels (f.n., false negatives). Fig. 3.24 illustrates an example of a
typical road scenario containing both true and false positives as well as false negatives. The
algorithm is evaluated in terms of false negative, true positive and false positive detection rates
under various conditions like diffused light, direct sunlight and indoor conditions and compared
to results obtained with perfect detection.

These results are shown in Table 3.2, where the percentages were computed based on ≈200
test images. Shadow pixels in images with sunlit scenarios can easily be misclassified as valid
foreground pixels. In general, small objects are also extracted in sunlit scenarios even when
they are far away from the car: but only 76% of their pixels are classified as valid foreground.
Clearly, such regions may consist of only 20 pixels – and approximately five pixels of such
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Figure 3.24: Detected pixels of an exemplary foreground object (a). Some pixels are not clas-
sified as background or shadow pixels and thus highlighted as true positives (b).
There are also valid foreground pixels that are not highlighted as foreground (false
negatives).

Scenario Obj. Size t.p. f.n. f.p.

Diffuse light
small 85% 15% 2%
large 95% 5% 3%

Sunlight
small 76% 24% 7%
large 93% 7% 10%

Indoor cond.
small 90% 10% 1%
large 97% 3% 4%

Table 3.2: Overview of the obtained validation results: Percentages of true positive, false nega-
tive and false positive pixels in foreground regions.

objects not being classified as valid foreground result in a false negative rate of 25%. The false
negative rates drastically decrease when objects approach to the car. Highly false negative rates
may lead to incomplete foreground regions and hence to a bad body height estimation for objects
far away from the car, but body height estimation becomes more precise for objects approaching
the car. Good detection rates were achieved for large foreground objects in all tested scenarios.
Clearly, having a large fraction of misclassified pixels results in an object not being detected.
Furthermore, shadow pixels in images with sunlit scenarios can easily be misclassified as valid
foreground pixels.

Figure 3.25 illustrates the detection of a simulated object surrounded by snowflakes in a snowy
scenario. The snowflakes are detected as small, rapidly moving objects and can be removed
using median filtering [97]. Figure 3.25(b) illustrates the detection result of an object in a
snowy scenario when snowflakes were removed by median-filtering. Large snowflakes close to
the camera overlapping the boundary of objects cannot be removed using median-filtering and
may lead to wrong body height estimation results. However, tracking the object over long image
sequences or using cameras with high frame rates overcomes this limitation. Since snowflakes
move very fast, the number of images containing inaccuracies in the object’s boundaries caused
by snowflakes or heavy rain in a huge data set is small.
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(a) (b)

Figure 3.25: Simulated foreground object and extracted snowflakes (a). Removed snowflakes
using median-filtering and remaining disturbances at the boundary of a detected
object (b).

time Averaging Similarity Decomposition Total Time
t0 ≈ 2.7 ms - - 2.7 ms
t1 ≈ 2.7 ms ≈ 0.2ms - 2.9 ms
t2 ≈ 2.7 ms ≈ 0.4ms - 3.1 ms
t3 ≈ 2.7 ms ≈ 0.6ms - 3.3 ms
t39 ≈ 2.7 ms ≈ 8.4 ms - 11.1 ms
t40 ≈ 2.7 ms ≈ 9.0 ms - 11.7 ms
t41 - - ≈ 412 ms 412 ms

Table 3.3: This table illustrates the computation time for the C-implemented background ini-
tialization on a 2.54 GHz AMD Phenom 9650 Quad-Core CPU.

Execution time and parallelization

A complex indoor environment with three walking people, shadow effects and some illumina-
tion changes (switching light on/off) was chosen to measure the mean execution time of the
proposed foreground detection algorithm. About 400 test images of this data set were used for
execution time analysis and the mean execution time as well as the standard deviation (Std.
Dev.) were computed. The proposed algorithm was realized in a C-based implementation.
Table 3.3 gives an overview of the execution times for the proposed background initialization
algorithm (see Section 3.3.1) using N = 40 input frames with size 480 × 204 and a block size
of 9×9 pixels. The advantage of similarity computation based on averaging is the reuse of pre-
viously computed data. Table 3.3 illustrates a constant execution time for block averaging for
every new input frame, and an increasing computation time for similarity computation. This
computation time increases due to an increasing number of similarity computations for each
incoming new frame: For instance, the similarity of one block at a pixel position in frame 2 has
to be computed with the corresponding block in frame 1. For a third frame, the similarity of
one block at a pixel position in frame 3 has to be computed both with the corresponding block
in frame 2 and frame 1, and so on. While the similarity of two blocks can be computed be-
tween two incoming frames from a camera having a frame-rate of 30 frames per second, matrix
decomposition takes 412ms for execution.
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Mean Time (1 Core) Std. Dev. Image Size 2 Core 4 Core
Rectification ≈ 4.5 ms 0.7 ms 640 × 480 ≈ 2.3 ms ≈ 1.7 ms
Background ≈ 30.1 ms 1.2 ms 480 × 204 ≈ 15.1 ms ≈ 7.5 ms
Shadow Dect ≈ 24.1 ms 2.3 ms ” ≈ 12.2 ms ≈ 6.3 ms
Ill. Comp ≈ 10.4 ms 1.6 ms ” ≈ 5.6 ms ≈ 2.8 ms
Interpolation 0.0 ms 0.0 ms ” ≈ 2.0 ms ≈ 2.2 ms
Total Time 69.1 ms 37.2 ms 20.5 ms

Table 3.4: This table illustrates the computation time for the C-implemented, non parallelized
foreground detection algorithm (left) and for the C-implemented, parallelized fore-
ground detection (right) on a 2.54 GHz AMD Phenom 9650 Quad-Core CPU.

The foreground detection algorithm has been parallelized using multi-threading on a quad-core
CPU (see Section 3.3.6). Therefore, the image was subdivided into n sub-images, and each sub-
image was processed by a concurrent thread. The result of all threads is then merged using a
small thread called interpolation. Table 3.4, on the left side demonstrates the execution times for
rectification using bilinear interpolation, background modeling, shadow detection and illumina-
tion changes using a single core of a 2.54 GHz AMD Phenom 9650 quad-core CPU. Table 3.4,
on the right side gives an overview of the measured times using two and four cores. Table 3.4
also illustrates increasing time for merging and interpolation, whereas the total computation
time decreases with an increasing number of threads. Both the algorithms for background ini-
tialization and foreground detection were implemented in C.

Finally, the efficiency of the proposed foreground extraction method has been compared to
other well-known algorithms presented in Section 3.2 using various test scenarios. Figure 3.26
illustrates one of the evaluated scenarios containing up to 500 test frames. Difficulties of this
scenario are a less textured environment and both weak and strong shadows induced by different
sources of light. While the approach in [79] modeled the background well, shadow detection
fails in some cases. Similarly, while the shadow detector in [82] performed well, the background
model of [82] has some limitations. One limitation is that once the background is learned
the background model is not updated. This results in many noisy foreground pixels caused
by illumination changes etc. The combination of both algorithms and the modification of the
shadow detector as well as the light compensation led to a powerful background estimator which
resulted in better foreground detection on gray-scaled images, when compared with state of the
art techniques (see Figure 3.26).

3.5.2 Camera tilt, driver tilt and ground distance estimation

After driver extraction and torso determination, estimation the camera tilt, the driver tilt and the
ground distance L based on head and foot points is the first step to determine the body heights
of approaching drivers. In this section, the results of camera and driver tilt as well as ground dis-
tance estimation are presented. In Section 3.4.5, a highly robust algorithm has been presented
that estimates the camera pose by solving a multi-objective goal attainment problem using se-
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Original image sequence.

Foreground detection using Mixture of Gaussian and low thresholding results in misclassification
(shadows, noise).

Less noise in background modeling [79], but detected strong shadows pixels.

Good shadow detection is achieve in [82] but still image noise.

Our approach with proposed shadow and foreground detection. Noise and shadows are better
suppressed.

Figure 3.26: Evaluation of the proposed foreground detector with different background models
and shadow detection algorithms.

quential quadratic programming. Due to very long execution times, a fast algorithm has been
introduced in Section 3.4.6 to determine the camera poses by solving the standard minimization

problem min
α,β,γ,δ

n∑
i=1

f2(α, β, γ, δ) ∀i ∈ N. The following experiments described in Section 3.5.2

and Section 3.5.3 consider both algorithms. The algorithms are not explicitly named if there
are no significant differences in the results for both algorithms. In Section 3.4.5, a multiob-
jective goal attainment minimization algorithm is presented to estimate the camera and driver
tilt by minimizing a model-based function fhm using samples of head and foot points obtained
from approaching drivers (see Eq. 3.58). Since the input data sets depend on the camera and
driver tilt, the minimization function becomes zero if the estimated camera tilt and driver tilt
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best match with the real camera and driver tilt. The goal attainment minimization converges in
highly precise camera and driver tilts but the limitation of this algorithm is the prerequisite for
initial points x0 close to the global minimum. Therefore, an algorithm is proposed to iteratively
determine potential initial points (see Figure 3.13). This algorithm consists of two iteration
stages. One iteration stage that is called Inner Loop or border modification and a second stage
that is called Main Iteration (see Figure 3.13). The border modification stage restricts and re-
fines the maximum search area to select optimal starting points. With these starting points, the
main iteration stage minimizes function fhm to find an appropriate estimation for the camera and
driver tilt. However, if the global minimum has not been determined due to poor minimization
results using the extracted starting points, then the main iteration stage increases the number of
potential initial points and repeats the border modification procedure until best starting points
have been obtained.

Table 3.5 illustrates the relative number of main iteration stages (Main Iteration) that are re-
quired for estimating camera and driver tilt using the goal attainment minimization algorithm.
For the remainder of this thesis, camera tilt and driver tilt estimation is summarized as pose es-
timation. Seventy percent of all poses can be estimated using one main iteration stage and 4.8%
of all poses require four main iteration stages. Additionally, Table 3.6 and Figure 3.27 give an
overview of the mean number of border modification stages Inner Loop within each of the four
main iteration stages. Experiments illustrated that normally 0, 1 or 2 border modification stages
are required for estimating a suitable minimum for camera pose determination.

In further experiments, the number of potential starting points was determined that are recom-
mended to optimally select initial points. Table 3.7 illustrates the optimal number of starting
points for each main iteration stage. 256 starting points are used for the first and 10000 starting
points are used for the fourth main iteration stage. Therefore, an increasing number of starting
points is spread over the whole search area for each main iteration stage to find appropriate
initial points close to a global minimum. In this manner, appropriate initial points may be found
in further iteration stages if initial points obtained from previous stages led to bad minimization
results.

Experiments are also conducted to illustrate the characteristics of the number of starting points
and the occurrence of border modifications within one or several main iteration stages (see Fig-
ure 3.28). The upper part of Figure 3.28 shows the characteristics of the number of starting
points (solid line) over the iteration steps that are required by the algorithm to select appro-
priate initial points close to the local minimum. The algorithm selects strong initial points by
iteratively strengthening test conditions and by deleting points that do not pass the test. In this
manner, an appropriate number of initial points can be found within one or several main iter-
ation stages. The lower part of each figure in Figure 3.28 illustrates the occurrence of border
modifications (red, solid bars) within each main iteration stage. Additionally, these figures also
indicate the beginning of new main iteration stages (blue, dashed bars) within the minimization
processes requiring one, two, three and four main iteration stages to estimate the camera poses
by means of the initial points.

As mentioned above, the initial point determination is based on the minimization function fhm.
In a further experiment, both the minimization error and the final error for camera tilt and
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Main Iteration 1 2 3 4
Percentage 70.0 % 18.2 % 7.0 % 4.8 %

Table 3.5: Relative number of Main Iteration stages required for camera/driver tilt estimation
(computed across 2000 poses).

Border Mod. 0 1 2 3 4 5 6 7 8 9 10 11
1 Main It. 58.9 29.1 9.3 2.1 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 Main It. 33.6 24.9 20.8 7.9 6.3 3.0 1.4 0.8 0.3 0.8 0.0 0.3
3 Main It. 21.6 18.0 23.0 12.9 6.5 7.2 4.3 3.6 0.0 1.4 1.4 0.0
4 Main It. 13.7 18.9 14.7 16.8 11.6 8.4 7.4 2.1 2.1 1.1 1.1 2.1

Table 3.6: Relative number [%] of border modifications (Inner Loop) that are required to esti-
mate camera and driver tilt using 2000 test poses. For some pose estimations, two or
more Main Iteration stages are required.

Main Iteration 1 2 3 4
Num. of Starting Points 256 12962 4096 10000

Table 3.7: Number of starting points used for initial point determination for each main iteration
stage.
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Figure 3.27: Mean number of border modifications that are required to estimate camera and
driver tilt (computed across 2000 poses)

driver tilt estimation are determined. Both the goal attainment algorithm and the standard min-
imization algorithm display an error indicating the quality of the minimization results. This
error indicates how good the design goals have been achieved during minimization – very small
values close to zero indicate good achievements of the design goals and vice versa. Figure 3.29
illustrates the (mean) pre-estimation error and the final minimization error. The algorithm se-
lects appropriate initial points, which serve as an input to the final minimization, by computing
pre-estimation errors for the remaining starting points (solid line, upper figure) after each it-
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Examples of 1, 2, 3 and 4 main iteration stages without border modification stages.
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Examples of main iteration stages with 4, 10 and 11 border modification stages.

Figure 3.28: This figure illustrates the characteristics of the number of starting points (solid
lines, upper part of the figures) and the occurrence of border modifications (solid
bars, lower part of the figures) within one or several main iteration stages (dashed
bars, lower part of the figures) over the number of iterations that are required to
select appropriate initial points close to the local minimum of fhm and to estimate
camera and driver tilt.

eration step and by computing the mean error of all pre-estimation errors (solid line, lower
figure). New starting points are then selected based on the mean pre-estimation error for the
next iteration stages. The solid bars in the lower part of Figure 3.29 illustrate the final error
of the minimization using the selected initial points and goal attainment minimization. It can
be seen that the mean error of the pre-selected starting points can be lower than the final error
for camera and driver tilt estimation using goal attainment minimization, especially for the first
or second main iteration stage. This means that initial points were found that match well with
local minimas of function fhm. But these points are not suitable as initial points for estimating
camera and driver tilt since the goal attainment minimization would converge to a local min-
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Figure 3.29: Mean pre-estimation error of the determined initial points over the iterations of the
algorithm that are required to select optimal starting points within two, three and
four main iteration stages (solid lines). Solid bars indicate the minimization error
after each main iteration.

It. Error αR βR γR δR αE βE γE δE

1 1.3e(−5) -0.191 -0.332 -0.161 0.334 -0.091 -0.332 0.199 0.398
2 7.4e(−6) -0.208 0.078 -0.016 0.319 -0.399 0.267 0.267 0.267
4 2.1e(−6) -0.271 -0.306 -0.081 0.265 0.399 0.200 0.402 0.401
Table 3.8: Wrongly determined poses having a minimization error less than 10e−4.

imum. Additional main iteration stages with an increased number of starting points help to
better estimate the global minimum of fhm and, hence, lead to small minimization errors (e.g.
less than 10e−4).

In Section 3.4.5, a threshold has been introduced to guarantee a convergence to the global min-
imum of the minimization function fhm using both the goal attainment minimization and the
standard minimization algorithm (see Figure 3.13). Experiments demonstrated that a minimiza-
tion error smaller than a fixed threshold th < 10e−4 yields good detection results for both ideal
and noisy input data. A larger threshold may lead to higher detection rates, but the detection
rate of local minima drastically increases using the presented minimization algorithm. A smaller
threshold yields very precise pose estimation results, but the detection rate to obtain the camera
pose for noisy input data drastically decreases. In this case, it is no longer possible to estimate
poses from noisy input data.

However, camera and driver tilt configurations exist that result in low minimization errors, but
the real and the estimated tilt values strongly differ from each other. Table 3.8 illustrates exam-
ples of such pose configurations: The real tilt values are presented by αR, βR, γR and δR and
the estimated tilt values are represented αE , βE , γE and δE .

Moreover, the quality of the computed ground distance L and the predicted body height highly
relates to the quality of the extracted camera and driver tilt. Table 3.9 illustrates the influence

105



3 Driver body height estimation

It. Error L′ LR hR LE hE

1 1.3e(−5) 1.12m 1.53 m 1.80 m 1.34 m 1.71 m
2 7.4e(−6) 1.12m 1.48 m 1.80 m 1.86 m 4.61 m
4 2.1e(−6) 1.12m 1.69 m 1.80 m 1.47 m 2.93 m

Table 3.9: Influence of wrongly determined poses on the estimated ground distance LE and the
determined body height hE .

Goal Att. Standard
98.55% 93.75%

Table 3.10: Convergence rates for both the goal attainment and standard minimization algo-
rithm.

of wrongly determined camera and driver tilt on the ground distance L and the body height h.
Variables LR and hR represent the real ground distance and the real body height, whereas LE

and hE represent the estimated ground distance and the determined body height based on the
camera tilt and driver tilt presented in Table 3.8. Finally, Table 3.10 illustrates the detection
rates for both goal attainment minimization and standard minimization. The detection rate is
a value indicating the relative number of convergences for a certain number of minimizations.
It can be seen that the goal attainment minimization algorithm leads to better detection results
compared to the standard minimization algorithm. This might be explained, as goal attainment
minimization explicitly considers noise in the input data that can be modeled with the design
goals.

Influence of noise on pose estimation

To analyze the robustness of the proposed camera tilt and driver tilt estimation algorithms, ex-
periments with input data sets containing weak, medium and strong noise have been conducted.
Figure 3.30 illustrates the interpolated detection error for camera and driver tilt estimation over
the number input data sets. Figure 3.30(a) illustrates the estimation error for the proposed fast
camera and driver tilt estimation algorithm, whereas Figure 3.30(b) illustrates the estimation
error obtained for the goal attainment minimization algorithm. In Figure 3.30, the extraction
error for camera and driver tilt seems to be very small (< 0.035 rad) for both implementations,
but this small error may result in a large height estimation error. This is described in the next
Section 3.5.3.

3.5.3 Body height estimation

In this section, the results of the realized body height estimation algorithm are presented and
discussed in terms of accuracy and execution time. Previous sections describe two algorithms to
estimate the camera pose based on a goal attainment and on a standard minimization problem.
The first part of this section presents the height error for both an unknown offset ∆ within
the ground distance L and the height error made by a wrongly chosen height model for an
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Figure 3.30: Error in camera and driver tilt estimation using input data with weak, medium and
strong noise.

underlying parking scenario. The second part of this section describes the influence of noise in
the data sets to height estimation and compares both methods in terms of accuracy, the number
of input data sets that are required to obtain good minimization results and the execution time.
This section ends with a timing analysis for the absolute height estimation process beginning
with background initialization and ending with absolute body height computation.

Height error due to an offset ∆ in L

The intersection point of the car ground plane and the ground plane (see Section 3.4.1) is not
located in one of the car wheels if a vehicle is parked on the road and if there is a curbstone
next to the car on which drivers approach. Such a parking situation leads to an unknown offset
∆ within the ground distance L. Consequently, a new ground distance Lnew = L + ∆ must
be determined considering the offset ∆. However, this offset ∆ and Lnew cannot be estimated
using image correspondences of one camera only. To study the error of height estimation caused
by this offset ∆, experiments were conducted with subjects that have different body heights and
the height error is computed.

Figure 3.31 illustrates the estimation error influenced by the unknown offset ∆ 6= 0 for both
short persons (1,5m, see Figure 3.31(a)) and tall persons (2.0m, see Figure 3.31(b)). The dashed
lines illustrate the height error for a maximum positive camera tilt α = 0.4, β = 0.4, and for the
maximum negative camera tilt α = −0.4, β = −0.4 over the offset∆. The solid line indicates
the error for a camera system whose orientation is coincident with the world coordinate system.
In general, the ground distance L depends only on the calibrated distance L′ and on the camera
tilt α, β (see Section ). Therefore, the driver tilt does not influence the height error. It can be
seen that the height error increases for decreasing camera tilts and vice versa. This is caused
by the term cos(α) · cos(β) · L in Eq. 3.55: The trigonometrical term cos(α) · cos(β) can be
assumed to be a scale factor and scales the ground distance L depending on the camera tilt.
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Figure 3.31: Influence of the unknown offset to height estimation for a short person (a) and a
tall person (b). Max Tilt (-) represents the error assuming the maximum negative
camera tilt −0.4 and Max Tilt (+) represents the error assuming the maximum
positive camera tilt 0.4.

Increasing the camera tilt leads to a decreasing length L of the ground distance vector and also
to a decreased influence of the offset ∆ within L. Figure 3.31 also illustrates the influence of
the physical body heights of approaching drivers influences on the height error. The unknown
offset ∆ leads to larger height errors for tall persons than for short persons.

In ergonomics, seats can be pre-adjusted up to a height error of hε = ±6cm. Therefore, an
unknown offset |∆| < 6cm for short persons and an unknown offset |∆| < 5cm for tall persons
can be tolerated for body height estimation.

Height errors due to wrongly chosen height models

In this section, the characteristics of height errors are presented for actual parking scenarios
where wrong height and parking models have been chosen. In a first experiment, the height error
is determined using the parking model of the Curbstone Parking Scenario (see Section 3.4.2)
for an actual Inclined Parking Scenario (see Section 3.4.3).

Height error caused for inclined parking scenarios

Figure 3.32 illustrates the characteristics of height errors that occur in an real inclined parking
scenario if a wrong parking model – the curbstone parking scenario – has been chosen for
height computation. The height error obtained from this model depends on the driver tilt γ
and has been computed for both short persons (h = 1.5, see Figure 3.32(a), 3.32(c)) and tall
persons (h = 2.0, see Figure 3.32(b), 3.32(d)). In this experiment, driver tilt γ is assumed
to be constant (γ = −0.1 and γ = 0.1) for all tested scenarios. Additionally, the experiments
consider a maximum negative tilt of the camera (Max Tilt (-)) α, β = −0.4, a maximum positive
tilt of the camera (Max Tilt (+)) α, β = 0.4 and the scenario where the orientation of the
camera coordinate system is coincident with the orientation of the world coordinate system (tilt
α, β = 0.0).
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(a) h = 1.5m, γ = −0.1
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(b) h = 1.5m, γ = 0.1
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(c) h = 2.0m, γ = −0.1
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Figure 3.32: Height error incurred by a wrongly chosen height model for a short person (1.5m,
(a),(b)) and for a tall person (2.0m, (c), (d)). Height estimation is based on the
curbstone parking scenario for a real inclined parking scenario (fixed driver tilt γ,
varying δ).

Following Eq. 3.40, δ relates to the height estimation within the term cos(δ). For this reason,
resulting height errors are symmetric with respect to δ = 0.0. The figures also illustrate that
even low driver tilts δ and γ could result in a large height error. Moreover, the use of the height
model of the curbstone parking scenario for a real inclined parking scenario results in a large
offset. This leads to a height error even if there is no driver tilt (δ = 0.0). The height model
for the curbstone parking scenario assumes a changing ground distance L that depends on the
camera tilts α and β (see Eq. 3.27), whereas the inclined parking scenario does not consider
camera tilt. This leads to a large height error even for scenarios without driver tilt. The height
error obtained for the inclined parking scenario also depends on the height of drivers, i.e. short
persons cause a smaller height error than tall persons.

Similarly to Figure 3.32, Figure 3.33 illustrates the characteristics of height errors over driver
tilt γ for two fixed driver tilts δ = 0.0 and δ = −0.4. As mentioned above, δ affects height
estimation within the term cos(δ) (see Eq. 3.40) so that computed height errors are independent
of positive and negative values for δ. Figure 3.33 also illustrates the characteristics of height
errors over the driver tilt γ. These errors are computed for both a short person (h = 1.5, see
Figure 3.33(a), 3.33(c)) and a tall person (h = 2.0, see Figure 3.33(b), 3.33(d)) for two fixed
driver tilts δ = 0.0 and δ = −0.4. Contrary to Figure 3.32, the offset in the characteristic of
height error is zero for a driver tilt δ = 0.0. This offset depends on body height and increases
for increasing driver tilts δ.
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(c) h = 2.0m, δ = 0.0
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Figure 3.33: Height error incurred by a wrongly chosen height model for a short person (1.5m,
(a),(b)) and for a tall person (2.0m, (c),(d)). Height estimation is based on the
curbstone parking scenario for a real inclined parking scenario (fixed driver tilt δ
and varying γ).

Height error caused for curbstone parking scenarios

In a second experiment, the height error is determined for an actual curbstone parking scenario
if a wrong parking model – the inclined parking scenario – has been chosen for height compu-
tation. Figure 3.34 illustrates the characteristics of the height error that depends on the camera
tilt α and that has been computed for both a short person (h = 1.5, see Figure 3.34(a), 3.34(c))
and a tall person (h = 2.0, see Figure 3.34(b), 3.34(d)). In this experiment, the camera tilt β is
assumed to be constant for all tested scenarios (β = −0.1 and β = 0.1).

For the inclined parking scenario, the experiments consider test scenarios with a minimum
driver tilt (Max Tilt (-)) γ, δ = −0.4, a maximum positive driver tilt (Max Tilt (+)) γ, δ = 0.4
and a test scenario without tilt between the world coordinate system and the driver (γ, δ = 0.0).
Figure 3.34 presents the characteristic of the height error over the camera tilt α, and Figure 3.35
the characteristic of the height error over the camera tilt β.

Similarly to the first experiment, there is a large offset in the estimation error for values α = 0.0
and β = 0.0 resulting from a wrongly determined ground distance L due to a wrongly chosen
height model. The ground distance L in the height model of the curbstone parking scenario
depends on the detected camera tilt. The height model of the inclined parking scenario considers
only the driver tilt in input data sets meaning that the car ground plane is co-linear with the
ground plane. For this parking scenario, the height model does not consider the camera tilt
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Figure 3.34: Height error caused by a wrongly chosen height model for a short person (1.5m,
(a),(b)) and for a tall person (2.0m, (c),(d)). Height estimation is based on the
inclined parking scenario for an actual curbstone parking scenario (fixed camera
tilt β and varying camera tilt α).

and leads to inaccurate height results and hence to large errors in height estimation. Moreover,
the body heights themselfs strongly influence the estimation and lead to differences in height
estimation up to 4m even for small camera or driver tilts. In other words, a wrongly chosen
height model for a real parking scenario leads to large errors in height estimation even for small
camera or driver tilt.

Furthermore, real life parking scenarios usually consist of a combination of both Curbstone
Parking Scenario and Inclined Parking Scenario so that a separation is not suitable for the most
parking scenarios. However, if either the camera tilt or the driver tilt is very small (α, β < 0.05,
γ, δ < 0.05), it is highly desirable to use one of the special height models. The advantage of
using one of these parking models is the analytical determination of the driver height from the
input data.

Influence of noise on body height estimation

When dealing with real life applications, input data are noisy and may include many outliers. As
mentioned in Section 3.5.2, noisy input data cause an error in pose estimation and lead to errors
in height estimation. To overcome this limitation, an algorithm is proposed in Section 3.4.8 to
iteratively remove outliers in noisy input data and to refine the height estimation results obtained
(see Figure 3.17). Outliers and noisy input data are removed during the height refinement
process if their estimated height values strongly differ from an estimated mean value that has
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(c) h = 2.0m, α = −0.1
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Figure 3.35: Height error caused by a wrongly chosen height model for a short person (1.5m,
(a),(b)) and for a tall person (2.0m, (c),(d)). Height estimation is based on the
inclined parking scenario for a real curbstone parking scenario (fixed camera tilt α
and varying camera tilt β).

been computed across all input data. In other words, the input data sets are removed whose
differences between the estimated heights and the mean height are larger than a fixed difference
dhi = |hi − hmean| > δthres · hmean – e.g. δthres = 20%.

Table 3.11 illustrates the percentage of correctly estimated body heights in a test set of input
data. The percentage of correctly estimated driver body heights depends on the chosen threshold
δthres and on the noise, and is determined using ≈ 500 different test configurations (foot and
head points, camera and driver tilts) of approaching drivers. Each configuration consists of 42
input data sets (foot and head points obtained from the camera) and is overlaid with noise of
different strength to analyze the robustness of the proposed height estimation algorithm. Weak
noise in the input data led to low height errors (≈ 4cm), whereas medium and strong noise in the
input data led to height errors of up to 12cm. The body height for a specific test configuration
was completely estimated if the camera and the driver tilt were determined and if the difference
between the estimated body height and the reference body height was less than 3cm.

Table 3.11 also demonstrates that low values for the threshold δthres lead to poor detection rates
for input data overlaid with strong noise. The mean height hmean that has been calculated from
noisy input data at the first iteration stage may strongly differ from the real body height of an
approaching driver. For too low values of δthres, only input data are considered for further it-
eration stages with small differences to the mean height hmean. In this case, input data sets
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3.5 Results

δthres weak medium strong
40 % 98.51 % 96.50 % 91.25 %
20 % 98.38 % 94.38 % 73.62 %
5 % 97.50 % 88.21 % 48.50 %

Table 3.11: Detection rate of correctly estimated body heights for different thresholds δthres and
image noise.
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Figure 3.36: Height error over the number of input data sets for goal attainment minimization
and standard minimization.

containing strong noise are assumed to be valid input data and lead to wrongly computed body
heights. Additionally, threshold δthres has minor influence on the detection rates for input data
sets containing weak noise. A chosen threshold δthres > 40% leads to more robust detection
results in particular for noisy input data, but the algorithm may theoretically require more it-
eration stages for body height estimation. However, it has been shown that only two iteration
stages are required to estimate the body heights from noisy input data using the proposed height
refinement process (see Figure 3.17) and a threshold δthres ≤ 40%.

The quality of the extracted body height also depends on the number of input data sets used for
body height estimation. Therefore, experiments have been conducted to study the influence of
the number of input data sets on the height error. Figure 3.36 illustrates the height error over
the number of input data sets for both the standard minimization algorithm (see Figure 3.36(a))
and for the multi-objective goal attainment algorithm (see Figure 3.36(b)) using input data sets
overlaid with different noise levels (weak, medium, strong). It can be shown that both algo-
rithms result in good height estimation for more than 38 input data sets even for very noisy
input data. However, the multi-objective goal attainment problem described in Section 3.4.5
yields more precise results compared to the standard minimization algorithm and requires less
input data sets for sufficient body height estimation. Moreover, the standard minimization algo-
rithm leads to a lower detection rate for body height estimation compared to the multi-objective
goal attainment algorithm (see Table 3.10)
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3 Driver body height estimation

Execution time

Figure 3.37 illustrates the computation time for the C-implemented height estimation algorithm
using the goal attainment minimization algorithm and the standard minimization algorithm.
Both algorithms are executed on an AMD Phenom 9650 2.54 GHz CPU. As mentioned in
previous sections, the goal attainment algorithm yields precisely estimated body heights but
requires a long time for execution.
Figure 3.37(a) presents the execution time for the goal attainment minimization algorithm using
ideal input data sets and data sets overlaid medium and strong noise. Differences in execution
times for the goal attainment algorithm using input data overlaid with medium and strong noise
are less than 60ms so that corresponding curves overlap.

The execution times depend on the number of border modification stages for initial point de-
termination and on the number of main iteration stages needed for pose estimation. However,
experiments demonstrated only a slight influence of the number of input data sets on the exe-
cution time for the goal attainment algorithm. Figure 3.37(a) illustrates the execution time for
height estimation over the number of border modifications for the goal attainment minimization
using 42 input data sets and several main iteration stages (1-4).

By contrast, Figure 3.37(b) presents the execution time for height estimation based on the stan-
dard minimization algorithm over the number of input data sets. In that context, two iteration
stages are required to refine the body heights. The execution time for the standard minimization
algorithm is nearly identical for input data sets containing medium and strong noise. Con-
trary to height estimation that is based on the goal attainment algorithm, the execution time for
height estimation using the standard minimization algorithm depends on the number of input
data sets. Although the standard minimization algorithm yields less precise results than the
goal attainment minimization algorithm, it can be used very well for estimating body heights of
approaching drivers in automotive applications due to its fast execution times.

Table 3.12 gives an overview of the execution times for a complete height estimation process on
a 2.54 GHz AMD Phenom 9650 quad-core CPU. To determine the execution times, a camera
system has been chosen that has a frame-rate of 30 frames per second. The algorithm requires
2.41sec to compute an empty background from 60 initialization frames captured by the cam-
era. Thereafter, the image sequence, on which background initialization is performed, contains
information about the approaching drivers and are also feasible for driver extraction. Along
with input data based on head and foot points extracted from 42 frames, height estimation is
performed within 1.89sec. For this reason, a total execution time of 4.3sec is required to esti-
mate body heights of approaching drivers. The computation time is lower than the maximum
available time of (≈ 5sec) for standard ingress scenarios.

Experiments are also conducted to analyze the accuracy of height estimation. Therefore, the
body heights of previously measured drivers were estimated during their approaching. Fig. 3.38
illustrates a selection of previously measured drivers and their estimated heights in comparison
to their real heights. It can be seen that body heights can be estimated with an accuracy of up to
3cm using two refinement stages for both the goal attainment and for the standard minimization
algorithm. Within the domain of ergonomics, an accuracy of body height estimation of up to
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Figure 3.37: Execution time required for height estimation based on the goal attainment algo-
rithm over the number of border modifications (42 input data sets) (a). Execution
time required for body height estimation using the standard minimization algo-
rithm over the number of input data sets (b).

Task Execution Time
BG. Initialization (60 FR.) ≈ 2.00sec
BG. Computation ≈ 0.41sec
Head/Foot Point Extraction (42 FR.) ≈ 1.39sec
Height estimation (fast) ≈ 0.50sec
Total Time 4.30sec
Table 3.12: Total execution time for height estimation.

7cm is sufficient for individual seat pre-adjustments. However, high heeled shoes or hairstyle
significantly influence body height measurements. Unfortunately, this cannot be compensated
for in this thesis since only the highest and the lowest points of the walking drivers were ex-
tracted. A potential solution to overcome this limitation is to estimate properties like leg length,
body size and head size, but these are potential optimizations for future work.

Finally, Figure 3.39 demonstrates the implementation and the integration of the body height
estimation algorithm in a car prototype. The driver is recognized and his/her height is estimated,
whereas other humans in the surroundings of the car are ignored. Three height classes are
defined in order to individually pre-adjust the driver seat according to the measured body heights
of approaching drivers. These classes are class 1 for short, class 2 for normally sized and class
3 for tall people. Figure 3.39 also illustrates examples of differently sized people and their
categorization in one of these height classes. However, the detection range of body heights
is limited to sizes between 1.5m for short persons and 2.0m for tall persons. It can also be
noted that one input data set would theoretically be sufficient to estimate the body height of an
approaching driver, but using at least 32 input data sets was found to be sufficient to overcome
the effects of (strong) noise.
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Figure 3.38: Estimated body heights and standard deviations of previously measured drivers
over their real body heights. Body heights can be estimated with an accuracy of up
to 2cm.

3.6 Conclusion
This chapter proposes a novel method to estimate the absolute body height of approaching
drivers in order to automatically adjust the seat position according to driver height. Driver
height estimation is based on two processing stages. Driver extraction and torso determination
in panoramic images captured by the camera system, tilt estimation due to potentially inclined
parking cars and height estimation based on input data sets of head and foot points of approach-
ing drivers. This chapter proposes new methods to robustly extract approaching drivers in low
resolution panoramic images and to obtain absolute body height information using a single
omnidirectional camera only.

A Kalman-based background model is presented to separate foreground objects from back-
ground and that can detect approaching drivers in low resolution panoramic images. A
background model has been chosen instead of alternative detection methods such as optical
flow since it is able to extract complete regions of approaching drivers even in low-contrast
panoramic images. In particular, drivers that are far away from the car occupy fewer pixels
on each video frame and are, thus, not easy to differentiate from the background. These re-
gions, however, must be precisely determined as they serve as an input to the height estimation
algorithm. In Section 3.3, a new extension to the Kalman-based background estimator is pro-
posed to increase its robustness against shadows and illumination changes. These methods are
especially targeted to eliminate shadows in gray-scaled images and to precisely separate the
foreground regions with approaching drivers. From the extracted regions, foot and head points
are obtained on which height estimation is based.

The key feature for enabling absolute body height estimation using a single omnidirectional
camera is an estimated position and orientation (pose) of the camera relative to the ground.

116



3.6 Conclusion
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Figure 3.39: Body heights of short and tall persons that have been captured by the camera inte-
grated in the car prototype.

However, this pose varies for each parking scenario and must, hence, be determined from image
data only. Pose estimation is based on sets of extracted foot and head points obtained from the
drivers as these approach. Therefore, a model-based function is proposed that can estimate the
relation between the camera and the ground and that explicitly considers camera tilt caused
by inclined parked cars. The camera pose is determined by minimizing this function that has
a global minimum if the estimated camera pose best matches with the real camera pose (see
Section 3.4). The introduction of the camera pose overcomes the scale factor problem in state-
of-the-art approaches and enables height estimation with a single omnidirectional camera only.
Based on sets of foot and head points and on the determined camera pose, the absolute body
heights of approaching drivers are computed and serve as input for individually adjusting the
seat position for better ingress.

Experimental results demonstrate a complete extraction of drivers in panoramic images even if
they are far away from the car. The proposed shadow detection and illumination compensation
algorithm has proved to be a powerful extension to background estimation and foreground de-
tection in order to increase the robustness of background estimation under various illumination
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conditions. Experiments also show a precise camera pose estimation based on sets of foot and
head points, and an accuracy in height estimation of up to 3cm.

The method proposed enables absolute height estimation for a wide range of parking scenarios
without any knowledge of car users or geometrical information of the surroundings. This is new
compared to state of the art car information systems used in the automotive domain that store
height data of previously measured drivers in personal keys. Hence, this method is also feasible
for rental cars and to avoid accidents caused by mistakenly chosen keys.

In this thesis, the proposed background estimator along with shadow detection is used to sep-
arate approaching drivers from background. The background estimator might also be used in
an advanced driver assistance system to extract approaching cars or cyclists next to the door
in order to avoid collision while opening the car door [5]. The background estimator can run
in parallel and, hence, could be ported to small form factor embedded systems that blend well
with a standard automotive electronic setup.
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4.1 Introduction

Nowadays, driver assistance systems are increasingly gaining importance in high-end cars. Ex-
amples of these include Lane Departure Warning System (LDW), Adaptive Cruise Control
(ACC), Forward Collision Warning (FCW) and Blind-spot detection (BSD) [23]. While there
are many safety-oriented driver-assistance systems that function when the car is moving, a num-
ber of collisions with static obstacles happen while the car is stationary and one of its doors is
being opened. A standard practice is to check the area close to the car before opening the door.
But it is still fairly common to hit obstacles when opening the car door. An ambiance monitor-
ing system, however, along with a car door controlling system, which is able to stop or to lock
car door operations, would decrease the number of potential collisions with static objects while
opening the door.

In this chapter, an image-based monitoring system is presented that detects static obstacles close
to the door by generating 3D-information about the surroundings of the car. A motion-stereo-
based algorithm is proposed to obtain 3D-ambiance information using a single omnidirectional
camera. The ambiance information serves as an input to the collision avoidance sub-system of
the car door controlling system in order to warn passengers against obstacles next to the door.
This information is also feasible for controlling, stopping and locking actuated car doors in order
to avoid potential collisions with static obstacles. Fig. 4.1 illustrates a high-level overview of
the car door system – the smart car door system – including the image-based monitoring and the
car door controlling system. In [1] and [22], a generic control system for intelligent, actuated
car doors with arbitrary degrees of freedom has been presented. That paper focuses on the
mechanical design and on the control of the actuated door.

The focus of this chapter is on the camera sub-system along with the generation of 3D-ambiance
information. This information serves as an input to the collision avoidance planner in order to
estimate the risk of collisions when opening the car door and, if necessary, to stop or lock door
operations. Due to the large field of view of the omnidirectional camera, the vision system is
integrated with the side-view mirror of the car and can to completely monitor the surroundings
close to the door. The camera sensor, which is used for the omnidirectional camera, can be used
for vision systems in the automotive domain, but it only provides images with VGA-resolution.
This leads to low resolution panoramic images with an image size of only 720×204 pixels for a
horizontal aperture angle of 360◦ and a vertical aperture angle of 101◦. Panoramic images with
low resolutions lead to several challenges for image processing algorithms, in particular for
stereo algorithms that obtain 3D-ambiance information. Stereo algorithms use image features,
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Figure 4.1: The Smart Car Door System. Information obtained from the ambiance informa-
tion system is used to control, stop and lock car door operations in order to avoid
collisions with static obstacles next to the door.

e.g. textures, to establish image correspondences for the generation of distance information.
Objects such as walls, flower boxes or parked cars are common for typical parking scenarios
but they only provide less or no textures. Moreover, still available textures of such objects can
no longer be detected in low resolution panoramic images.

Hence, stereo algorithms must be able to obtain 3D-ambiance information from low textured
and low resolution panoramic images. Besides other stereo algorithms based on dynamic pro-
gramming or graph cuts, the semi-global matching algorithm proposed by Hirschmüller [106]
seems to be feasible for producing disparity maps even from low textured and low resolution
panoramic images. Moreover, Steingrube et al. [107] presented a performance evaluation of
stereo algorithms for automotive applications and compared three real-time capable stereo algo-
rithms in terms of accuracy and robustness. The semi-global matching algorithm yielded best
performance of the tested algorithms and is, hence, preferred to other algorithms to produce
disparity maps from panoramic images in this thesis. From the disparity maps obtained, the in-
formation system produces 3D-ambiance information of the surroundings close to the car door
via triangulation. This information is represented by bounding boxes that model the locations
and surfaces of potential obstacles and serves as input to the car door controlling system.

The rest of this chapter is organized as follows: Section 4.2 provides a summary of the state-
of-the-art in stereo vision with omnidirectional cameras addressing applications and algorithms
for robotics and for the automotive domain. Section 4.3 briefly describes the fundamentals of
stereo vision and presents the principles – such as the epipolar geometry – of omnidirectional
camera-based stereo vision systems. Section 4.3.2 and Section 4.3.3 describe a camera pose
estimation and a feature point-based refinement stage to improve position sensor-based camera
pose estimation. A rectification process is introduced in Section 4.3.4 to transform panoramic
images into rectified images in order to perform a correspondence search along 1 dimension.
Section 4.4 presents the computation of disparity maps based on the semi-global matching
algorithm, and Section 4.5 the generation of 3D-ambiance information via triangulation. In
Section 4.6, the calibration and quantization error when dealing with omnidirectional cameras
are introduced and the results are presented and discussed in Section 4.7. Finally, this chapter
ends with a conclusion in Section 4.8.
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4.2 Related work and contributions

Applications with omnidirectional cameras are now active research topics in robotics. These
cameras provide a very large field of view compared to perspective cameras and are, hence,
useful for many applications such as navigation, path-planning, obstacle detection and ego-
motion estimation [108]. For example, mobile robots might use omnidirectional cameras to
generate maps of unknown environments in order to accomplish autonomous tasks. In the
90s, researchers realized that omnidirectional cameras are particularly suitable for improving
ego-motion estimation [109]. It has been shown that ego-motion estimation algorithms cannot
distinguish small translations parallel to an image plane from small rotations in images captured
b perspective cameras. Omnidirectional cameras overcome this limitation by obtaining image
correspondences from everywhere so that ego-motion estimation can be performed indepen-
dently of the direction of motion. Later, ego-motion estimation using omnidirectional cameras
was refined by Gluckman et al. [110] and others so that structure-from-motion for panoramic
cameras became an active area of research.

4.2.1 Ego-motion and structure-from-motion from omnidirectional
cameras

Svoboda et al. [109] were the first who presented the fundamental theory of epipolar geometry
between a pair of central catadioptric cameras. They decomposed the mathematical model
of a central panoramic camera into two central projections to derive the epipolar geometry.
Kang [111] and Chang et al. [112] introduced discrete structure-from-motion estimators and
applied to omnidirectional cameras the known structure-from-motion methods developed for
perspective cameras. To achieve this, they used calibrated omnidirectional cameras and the
consistency of pairwise point features across image sequences. Geyer et al. [113] extended and
solved the structure-from-motion problem for uncalibrated omnidirectional cameras assuming
unknown intrinsic camera parameters. To enable the estimation of the fundamental matrix,
they introduced a new representation for point correspondences and lines in panoramic images.
Simultaneously, Fitzgibbon [114] considered the radial distortion parameters of omnidirectional
cameras and introduced a self-calibration method to estimate the distortion by means of several
image views using a non-linear, quadratic eigenvalue solver.

At the same time, Bunschoten et al. [115, 116] proposed a method to estimate and to refine the
2D translation and rotation between two subsequent poses of a mobile robot from panoramic
images allowing visual odometry. They determined the rotation and the length of the transla-
tion vector by projecting panoramic images on a plane parallel to the ground. Furthermore,
they extended their work with an efficient multi-baseline stereo algorithm to suppress noise
and to detect outliers in 3D-data [117]. The proposed algorithm was completed later with a
recovering algorithm for 3D-scene structures by means of cylindric panoramic images [118].
Later, Micusik et al. [119] extended Fitzgibbon’s approach to obtain the camera model of
an omnidirectional camera from epipolar geometry by solving a polynomial eigenvalue prob-
lem. They continued their line of research in [120] and provided a solution to the uncalibrated
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structure-from-motion-problem. However, their algorithm requires a known image center both
for fish-eye lenses and for omnidirectional cameras. Scaramuzza et al. [26, 30] extended the
algorithm proposed by Micusik so that no prior knowledge in terms of known image center etc.
is required to calibrate omnidirectional cameras.

A lot of work has been done to improve existing structure-from-motion algorithms, to perform
auto-calibration and to reconstruct a 3D-scene from point correspondences in panoramic images
using only video input data [121, 122, 123]. Some approaches use additional odometry data,
inertial sensors [124] or a laser range meter for applications with perspective cameras [125]
in order to increase the robustness of scene reconstruction. Makadia et al. [122] mentioned
that general structure-from-motion methods should be usable for any type of camera motion.
Therefore, they proposed constrained ego-motions based on a generalized Hough transforma-
tion for spherical panoramic cameras. This transformation processes all potential combinations
of corresponding pairwise features in consecutive images instead of selecting the best matches.
Makadia et al. [122] also show that constrained camera motions greatly simplify vision tasks
such as ego-motion estimation, mobile robot localization or structure-from-motion.

Very recent research addressing structure-from-motion has been presented by Scaramuzza and
Pollefeys in [126]. That work proposes a solution to the the unknown scale factor problem for
applications with a single (omnidirectional) camera that is attached to a vehicle. Therefore,
they developed a method to automatically compute the absolute scale factor by using an offset
of the camera to the vehicle’s center of motion and by introducing non-holonomic constraints
for wheeled vehicles. The absolute scale factor can then be determined accurately when the
vehicle turns. Last, Kawanishi et al. [108] proposed a method to model and to reconstruct
a 3D-environment based on feature point correspondences. In their approach, feature point
correspondences are captured by a single omnidirectional camera placed on top of a moving
robot.

4.2.2 Stereo vision in the automotive domain

Stereo algorithms, structure-from-motion and omnidirectional cameras left the field of robotics
and the scientific labs to be used for automotive applications. Stereo algorithms in the domain
of automotive system engineering are used to detect obstacles [127, 128] and pedestrians [129].
They are also essential for intersection assistance systems [130], for path planning tasks for
autonomous driving in off-road environments [131] and for driver assistance systems [132]. A
system that uses stereo algorithms to detect obstacles in a pair of images is presented by Bertozzi
et al. [127]. Their algorithm extracts obstacles in real-time by using a parallel computing
architecture and is also highly robust against shadows, illumination changes and different road
textures. Krotosky et al. [129] use color, infrared, and multi-modal stereo approaches to detect
pedestrian in front of a moving vehicle.

In the automotive domain, most of the obstacle and pedestrian detection algorithms are based
on stereo vision and must run in real-time. For this reason, Franke et al. [133] present a
precise correlation-based stereo vision approach for real-time interpretation of traffic scenes.
That algorithm has been extended in [134] to quickly detect obstacles and pedestrians and to
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interpret traffic situations for an urban traffic assistance system. Besides real-time aspects, many
applications require accurate dense disparity maps to enable accurate scene estimation in front
of the car [135]. For this reason, Steingrube et al. [107] presented a performance evaluation of
three real-time capable dense stereo algorithms for automotive applications. The semi-global
matching algorithm [136] yielded the best performance in terms of accuracy and robustness.
Additionally, more performance evaluations of stereo algorithms feasible for the automotive
domain were done by Klette et al. in [137].

4.2.3 Panoramic stereo vision in the automotive domain

Many applications in the automotive domain have been presented that use pairs of stereo images
captured by perspective cameras. Gehrig et al. [138] mentioned that 3D-perception of the
vehicle’s surroundings is crucial for automotive applications. Therefore, large field of view
cameras such as fish-eye and omnidirectional cameras are highly desirable for many driver
assistance and safety systems. They proposed the use of fish-eye cameras for driver assistance
systems and developed a low power hardware architecture that performs semi-global matching
on an embedded system [139].

Todays trucks are equipped with omnidirectional cameras. The closest surrounding area of a
truck cannot be seen directly by a truck driver. For this reason, omnidirectional cameras are
used as a maneuvering aid [140] and provide a bird-eye view of the surroundings next to the ve-
hicle (blind-spot detection, [141]). Furthermore, images captured by omnidirectional cameras
can also serve as an input for parking assistance systems. These systems compute potential mo-
tion paths for parking and, hence, increase the safety when driving large vehicles [24]. For an
automobile, Ghandi et al. presented several studies and experiments addressing the “... aware-
ness of what surrounds a vehicle that directly affects the safe driving and maneuvering of an
automobile ... “Ghandi et al. [142, 143]. They introduced the concept of dynamic panoramic
surround maps (DPS) obtained from images of omnidirectional cameras integrated on each side
of the vehicle to monitor the close surroundings when driving. Stereo algorithms, motion anal-
ysis based on optical flow and ego-motion estimation algorithms are then used to interpret the
surroundings and to build DPS maps. Similarly, Tardif et al. [123] presented an algorithm for
visual simultaneous localization and mapping (SLAM) in urban environments with an omnidi-
rectional camera integrated within a car. They estimated the motion trajectory of the camera
without any motion model by using the epipolar constraint for omnidirectional cameras and a
3D-map instead.

However, little work has been done on stereo vision with omnidirectional cameras in the domain
of automotive engineering for smart car doors. Omnidirectional cameras are commonly used to
monitor the ambiance in front of or next to the car while driving [143] or as a parking assistance
aid [25]. However, no application was presented that uses omnidirectional cameras to monitor
the ambiance next to the car in order to avoid collisions with obstacles when opening a car
door. In this section, a new application is proposed which uses motion stereo with a single
omnidirectional camera in order to detect static obstacles next to the car door. Figure 4.2(a)
illustrates the omnidirectional camera integrated within each side-view mirror of the car. In this
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(a) (b)

Figure 4.2: Omnidirectional camera integrated with the side-view mirror (a) and the mechanical
device to provide camera motion [12](b).

application, a mechanical device [12] is attached to the side-view mirror to vertically position
the camera and, hence, to obtain 3D-information from a stereoscopic device based on motion
stereo (see Figure 4.2(b)). For following applications, the camera movement could be provided
by a fold-in and a fold-out movement of the side-view mirror to dispense with the prototypical
mechanical device. Disparity maps could then be obtained from panoramic images captured at
several camera positions. From the disparity maps, 3D-ambiance information is produced using
triangulation and serves as an input to the control unit of the car door to avoid collisions with
potential obstacles by stopping or locking door operations.

For the car door controlling system, the sizes and locations of potential obstacles are impor-
tant, but not in so much details as required for image-based scene representations [125] for
telepresence applications [144]. For this reason, 3D-ambiance information of the surroundings
next to the car is provided by bounding boxes (point clouds) representing the shapes, sizes and
locations of potential obstacles next to the door. To obtain ambiance information about this
application, the following assumptions and constraints are important:

• All obstacles in an arbitrary parking scenario are assumed to be static to enable the gen-
eration of 3D-data based on motion stereo.

• All obstacles should not be closer than 50cm to the car to provide sufficient space for
door openings.

• Obstacles within the required space for door openings are of interest and must all be
detected. Therefore, 3D-ambiance information represented by bounding boxes must only
be generated for obstacles within this area.

• The area of interest is located close to the car door and its size is limited. Therefore, a
small baseline length of ≈ 3.5cm could be sufficient to obtain 3D-ambiance information
from pairs of panoramic images.

Figure 4.3 illustrates the block diagram for obtaining 3D-ambiance information from the sur-
roundings next to the car. The mechanical device vertically positions the omnidirectional cam-
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Figure 4.3: Block diagram of the proposed algorithm to obtain 3D ambiance information based
on motion stereo.

era in at least two poses to capture images from these positions hereby providing a stereo setup.
The coordinate system of the camera located at the lowest position provided by the mechanical
device can easily be calibrated to the car coordinate system: Therefore, this position is denoted
as the reference position on which pose estimation and refinement is based. The mechanical
device is equipped with a position sensor to determine the (pure) translation of the camera.
However, the coordinates of the reference camera system and the coordinates of the camera
system at an arbitrary pose N are related to each other by a translation and a rotation due to
inaccuracies in the mechanical device. The rotation, however, cannot be measured by the trans-
lation sensor and must be recovered from image data only. The resulting relation between the
coordinate systems at different poses can then be used to refine the camera poses and to rectify
panoramic images to obtain a parallel panoramic configuration. This configuration allows for
a correspondence search along one dimension and to facilitate disparity map computations for
pairs of panoramic images.

Triangulation is used to provide 3D-ambiance information about the objects located in the re-
quired space for door opening. This information is represented by bounding boxes and is used
by the control unit to compute opening paths for collision free door operations. Due to the
poor resolution of panoramic images used in this application and due to less textured regions,
however, the bounding boxes may be very noisy and could contain many outliers. Additional
information within panoramic images can be obtained from objects that are in contact with the
floor. Clearly, the edges between such objects and the floor are suitable for refining the locations
of bounding boxes by incorporating them into the 3D-data. In this manner, noise and outliers
can be suppressed sufficiently.

4.3 Stereo with omnidirectional cameras
A traditional approach to obtaining 3D-information of a real scene is stereo vision. For this
purpose, stereo algorithms are developed to recover depth information from at least two or
more images captured by a n-camera stereo configuration or by a single camera that has been
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moved to different positions. The problem of positioning a single camera to different places and
to recover 3D-information is known as the motion stereo problem. In general, the underlying
process of nearly all stereo algorithms is the establishment of point correspondences in pairs of
panoramic images on which computation of depth information is based. These correspondences
are mostly projections of the same physical scene points in one or more stereo images. With the
data obtained, triangulation is often used to reconstruct a 3D-scene from the point correspon-
dences and to determine the 3D-coordinates of these points relative to one reference camera
coordinate system. In this chapter, the fundamentals of stereo vision – the epipolar geometry
– for perspective and omnidirectional cameras are presented and explained in Section 4.3.1.
Section 4.3.2 describes the estimation and the relation of the camera poses to each other. Pose
estimation is based on image correspondences (feature points, see Section 4.3.3) and is required
to overcome inaccuracies in sensorially estimated camera positions and to rectify panoramic
images (see Section 4.3.4) thus enabling correspondence search along one dimension.

4.3.1 Epipolar geometry

In stereo vision, epipolar geometry is essential for determining depth information. Epipolar
geometry is a mathematical model that describes a geometrical relation between (image) cor-
respondences in pairs of images captured by a stereo device consisting of perspective or om-
nidirectional cameras. Such a stereo device must view a 3D-scene from at least two distinct
positions, so that each image contains the same scene information from a different view point.
In each stereo image, 3D-points of the scene are projected onto each image plane as 2D-points.
The epipolar geometry describes then a geometrical relation between corresponding 2D-points
as seen by the cameras in a pair of images.

The principles of epipolar geometry were first been studied by Hauck in 1883 and by von
Sanden in 1908 [145]. However, epipolar geometry became more popular when computer-
aided analyzing of digital images was feasible. Epipolar geometry enables correspondence
search along one dimension and is primarily used to obtain 3D information from 2D images.
It strongly depends on the relative camera poses and on the internal camera parameters for
both perspective and omnidirectional cameras. Figure 4.4(a) illustrates the epipolar geometry
for a pair of perspective cameras and Figure 4.4(b) shows the epipolar geometry for a pair of
omnidirectional cameras using spherical projection.

Epipolar geometry can be derived as follows [146]: Let I0 and I1 be images of a 3D-scene point
M that has been captured by a camera at two different poses C0 and C1. The coordinates Mi =
[X, Y, Z]Ti are the world coordinates of scene point M and mi = [x, y, z]Ti the coordinates
of the projection on the image plane at the i-th pose. The coordinate system C0 is denoted
as the reference coordinate system and, hence, I0 as the corresponding reference image (see
Figure 4.4). Furthermore, the two camera coordinate systems at two different poses C0 and C1

can be transformed into each other by a translation t and a rotation R. In this manner, each
world point M is represented in both camera systems following Eq. 4.1.

M1 = RM0 + t (4.1)
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In fact, only the projections mi of a point M up to an unknown scale factor si are available.
For this reason, the representation of a world point M presented in Eq. 4.1 must be rewritten as
follows:

s1m1 = s0Rm0 + t (4.2)

Moreover, the straight lines spanned by m1 and m0 meet in the 3D-scene point M whereas
vectors t, m0 and m1 are assumed to be co-planar. The plane spanned by these vectors is called
the epipolar plane and can be defined by its normal n0 = t ×m0. The corresponding normal
n1 represented by the camera system C1 can be derived based on Eq. 4.3:

n1 = R(t×m0) (4.3)

Following the co-planarity condition, the epipolar constraint can now be established and is
expressed in Eq. 4.4:

nT
1 ·m1 = 0 (4.4)

Figure 4.4(a) illustrates the epipolar geometry for conventional perspective cameras. An epipo-
lar plane is spanned by the three vectors t, m0 and m1, and the intersections of each epipolar
plane with the sensor plane forms the epipolar lines for any 3D-scene point. The epipolar lines
and epipolar planes can be obtained for all 3D-scene points that are visible in all stereo images.
For a stereo setup consisting of perspective cameras, all epipolar lines meet in a single image
point that is called the epipole. Depending on the chosen stereo configuration, the epipole may
be located within or beyond the sensor plane (see Fig. 4.4(a)) or may be located in infinity for
parallel camera configurations. The epipole is also the point on the sensor plane on which a line
– called the baseline – joining the effective pinholes of the cameras or of one camera placed at
different poses intersects the image plane. The parallel camera configuration describes a special
stereo setup designed to drastically facilitate matching of point correspondences in stereo im-
ages. In this configuration, all epipolar lines are parallel and relate to the image rows. Therefore,
matching can be performed along single rows and depth information can be directly computed
from the disparities obtained [147].

Figure 4.4(b) displays the epipolar geometry for spherical panoramic images. Bunschoten
[148] mentioned in that panoramic images – that are transformed from original images cap-
tured by an omnidirectional camera – can be treated as directly captured by a virtual panoramic
(omnidirectional) camera. He uses cylindrical panoramic images for n-occular stereo vision
tasks. However, the use of spherical panoramic images obtained by omnidirectional cameras
has some advantages over cylindrical panoramic images and is preferred in this thesis. The
virtual panoramic camera is specified by constructing a target projection area whose center is
placed in the projection center of the mirror (see Section 2.4). Rectified panoramic images taken
by omnidirectional cameras can then be processed as if truly captured by a virtual panoramic
camera and the epipolar constraint for omnidirectional cameras can be derived based on the
epipolar constraint of perspective cameras. A very good description about epipolar geometry
and epipolar curves for cylindric panoramic images has been presented by Bunschoten [148]
and is summarized below.
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Figure 4.4: Stereo setup that consists of perspective cameras (a) and stereo setup with omnidi-
rectional cameras whose image planes are represented by spheres (b).

Let M be the coordinates of a 3D-scene point and let m0 and m1 be the corresponding image
coordinates in the spherical camera coordinate systems C0 and C1. Similar to stereo configu-
rations consisting of perspective cameras, the coordinate system C0 is denoted as the reference
coordinate system and I0 the corresponding panoramic reference image. Furthermore, the two
camera coordinate systems at two different poses C0 and C1 can be transformed into each other
by a translation t and a rotation R (see Figure 4.4(b)).

In contrast to stereo setups that consist of perspective cameras, the baseline joining the effective
viewpoints of the omnidirectional cameras intersects each image plane two times (see Fig-
ure 4.4(b)). Therefore, two epipoles exist in panoramic images captured by a panoramic stereo
setup. For this configuration, the epipolar plane is spanned by the vectors t, m0 and m1. The
intersection line of the panoramic projection area with the epipolar plane forms the epipolar
curve for each 3D-scene point. For stereo setups with horizontally arranged panoramic cam-
eras, panoramic images do not preserve straight epipolar lines and epipolar curves are obtained
instead. The resulting epipolar curves start in one epipole and end in the other one. Figure 4.5(a)
illustrates epipolar curves in an original image captured by an omnidirectional camera and in a
panoramic image for a horizontal setup.

Bunschoten uses the epipolar constraint (see Eq. 4.4) to derive a parameterization for the
epipolar curves for cylindric panoramic images [148]. Therefore, he expressed m1 as m1 =
[cos(φ1), sin(φ1), z1]

T using cylindric coordinates and expanded Eq. 4.4 as follows:

0 = nT
1 ·m1 = [nx, ny, nz][cos(φ1), sin(φ1), z1]

T (4.5)

The elevation z1 of the epipolar curve can be expressed as a function of φ1 after reorganizing
Eq. 4.5 [148]

z1(φ1) = −nxcos(φ1) + nysin(φ1)

nz

(4.6)

Eq. 4.4 is also suitable for deriving a parametrization of the epipolar curves for spherical
panoramic images using m1 = [sin(θ1)cos(φ1), sin(θ1)sin(φ1), cos(θ1)]

T in spherical coor-
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4.3 Stereo with omnidirectional cameras

dinate systems.

0 = nT
1 ·m1 = [nx, ny, nz][sin(θ1)cos(φ1), sin(θ1)sin(φ1), cos(θ1)]

T (4.7)

The elevation angle θ1 is expressed as a function that depends on the rotation angle φ1 (see
Eq. 4.8)

θ1(φ1) = arctan

(
− nz

nxcos(φ1) + nysin(φ1)

)
(4.8)

For deriving epipolar curves, unit radii are assumed for the parametrization of the epipolar
curves for both cylindrical and spherical panoramic images. However, a special case exits for
stereo setups with omnidirectional cameras. This configuration is similar to the parallel stereo
camera configuration for perspective cameras where all epipolar lines are in parallel to each
other. In this case, the omnidirectional cameras are perfectly aligned vertically so that the two
coordinate systems C0 and C1 can be transformed into each other by a translation only. This
configuration is obtained by a baseline direction being equal to the direction of the z-axes for
the coordinate systems of the virtual panoramic cameras.

With this configuration, panoramic images can be generated whose orientations of the coordi-
nate systems are coincident for each pose Ci and in which all epipolar lines are in parallel. The
epipolar lines relate to the image columns and, hence, matching of point correspondences in
pairs of panoramic images can be drastically simplified. For this reason, depth information can
be directly determined from disparities obtained in panoramic images. Figure 4.5(b) illustrates
epipolar lines in an original image and in a panoramic image for a perfectly aligned vertical
stereo setup. In this thesis, the stereoscopic configuration is also called parallel panoramic
configuration.

In this application, motion stereo is used to obtain 3D ambiance information next to the car door.
A mechanical device is attached to the side-view mirror and provides a vertical movement of
the omnidirectional camera along the z-axis of its coordinate system. The projection center of
the camera is referred to as the origin of the coordinate systems Ci for spherical panoramic
images at the poses i. The coordinate system of the lower pose C0 is referred to as world
coordinate system W (the reference coordinate system) whereas the coordinate system of the
upper position is referred to as C1. Panoramic images that have been captured from different
vertical positions correspond to two images that have been captured from a parallel panoramic
configuration in order to perform correspondence search along single columns. However, an
ideally vertical camera motion cannot be realized due to clearances in the mechanical device.
This leads the translation in the direction of the baseline to be superimposed by additional
translation components along other directions. Moreover, the translation t is also superimposed
by an additional rotation R required to align the two coordinate systems C0 and C1.

Figure 4.6(a) illustrates a non-parallel panoramic configuration for a pair of spherical panoramic
images positioned at different poses i. In this case, the coordinate systems of the panoramic
images are coincident with the coordinate systems of the poses Ci. The baseline joining the
coordinate systems is also called the orientation axis for rectification and is a prerequisite for
rectifying panoramic images in order to obtain a parallel panoramic configuration. In other
words, pairs of panoramic images can be generated in order to achieve a parallel panoramic
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Figure 4.5: Epipolar curves and epipolar lines for a horizontal stereo setup (top) and for a verti-
cal stereo setup (parallel panoramic configuration) (bottom).

configuration if the rotation R and the translation t between the coordinate systems Ci are
known. Original images are projected into panoramic images that are based on rectified coor-
dinate systems Cri meaning that their orientations are coincident to each other and the relation
between the coordinate systems Cr0 and Cr1 is represented by a pure translation. This way, the
epipolar lines are in parallel in each panoramic image and matching of point correspondences
can be drastically facilitated. Figure 4.6(b) illustrates the parallel panoramic configuration with
coincident coordinate systems Cri for a pair of spherical panoramic images captured from two
poses i. In this setup, the direction of the baseline is equal to the direction of the z-axis for both
camera coordinate systems.

4.3.2 Determining and refining camera poses

Known camera poses of a stereo vision setup are a prerequisite for obtaining information of a
3D-scene in a pair of 2D-images via triangulation. Although the mechanical device provides
camera motions relating to a pure translation along in direction, clearances in the mechanical
device lead to small additional translations and additional rotations.

The camera platform is equipped with a position sensor to precisely determine the translation
in the direction of the z-axis, but additional translations and rotations cannot be measured.
This leads to inaccuracies in camera pose estimation and, hence, to camera poses that do not
fulfill the epipolar constraint for parallel panoramic configurations. Consequently, the actual
camera poses must be estimated to perform image rectifications of panoramic images in order to
obtain a parallel panoramic configuration. The relation between the camera poses – clearly the
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Figure 4.6: Non-parallel panoramic configuration (a) and parallel panoramic configuration (b)
with coincident coordinate systems Cri.

rotation R and translation t which relate an image In to a reference image I0 – can be estimated
via the epipolar geometry and a sufficient number of correspondences. Therefore, Faugeras
[147], Hartley [149] and others proposed an algorithm to estimate the epipolar geometry and
the essential matrix with N numbers of correspondences tracked in a set of (panoramic) images
I0..In. This algoritm is briefly presented below. Any true point correspondence must fulfill the
epipolar constraint following Eq. 4.9.

mn = Rm0 + t (4.9)

Eq. 4.9 can be rewritten by taking the vector product with t followed by a scalar product with
mT

n . Eq. 4.10 illustrates the resulting equation

mT
nt×Rm0 = 0 (4.10)

where R denotes the rotation matrix and t the translation vector. Eq. 4.10 can then be rewritten
in matrix form as follows:

mT
nSRm0 = mT

nEm0 = 0 (4.11)

The matrix E = SR obtained is called the essential matrix [147] where S is the (3 × 3) skew
symmetric matrix.

S =

0 −tz ty
tz 0 −tx
ty tx 0

 (4.12)

However, image correspondences m0,i ↔ mn,i obtained from real images are noisy and the
epipolar constraint is only approximately satisfied. For this reason, Eq. 4.11 must be rewritten
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as follows for any point correspondence i in a pair of panoramic images [149].

mT
n,iEm0,i = [xn yn zn]i

e0 e1 e2

e3 e4 e5

e6 e7 e8

x0

y0

z0


i

≈ 0 (4.13)

Next, Eq. 4.14 can be reorganized into the following matrix vector form by stacking the entries
of the essential matrix into a vector e = [e0 ..e8]

T .

[xkx0 xky0 xky0 ykx0 yky0 yky0 zkx0 zky0 zky0]i · e = di · e ≈ 0 (4.14)

The advantage of Eq. 4.14 is in providing a constraint of the essential matrix E for each corre-
spondence i and in setting up a system of linear equations (see Eq. 4.15) that can be solved for
all correspondences simultaneously. d0

...
dN

 · e = De ≈ 0 (4.15)

Variable D is a (N × 9) design matrix containing N vectors di of point correspondences. A
solution for the essential matrix E can be found by linearly solving Eq. 4.15

min ‖ De ‖ 2 with ‖ e ‖ = 1. (4.16)

where the constraint ‖e‖ = 1 is introduced to fix the scale of the essential matrix E and to
remove one degree of freedom. In this manner, a solution for e can be theoretically obtained
for eight correspondences by solving the moment matrix M = DTD using singular value de-
composition. The eigenvector of the moment matrix M associated with the smallest eigenvalue
relates to the minimum solution that fulfills Eq. 4.16. This algorithm described above has been
proposed by Hartley and is known as the 8-point algorithm [149].

However, the essential matrix E has two equal eigenvalues and rank two [147]. Bunschoten
[148] mentioned that the rank condition is not considered in the 8-point algorithm. Due to
noisy correspondences, the recovered essential matrix E has rank three. Instead, Bunschoten
[148] introduced a nearest true essential matrix E derived from an estimated essential matrix
Ẽ using singular value decomposition, where Ẽ = UΣVT and Σ = diag(σ1, σ2, σ3). He
proposed a method to estimate the nearest true essential matrix by means of E = UΣ′VT ,
where Σ′ = diag((σ1 + σ2)/2, (σ1 + σ2)/2, 0).

Once the essential matrix has been determined, the rotation matrix R and translation vector t
are computed. To achieve this, Hartley proposed a method to determine the translation matrix
S and the rotation matrix R from the singular value decomposition E = UΣ′VT following
Eq. 4.17 and Eq. 4.18 [150].

R = UYVT or R = UYTVT (4.17)
S = UZUT or S = UZTUT (4.18)
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(a) Correct Rotation R (b) Wrong Rotation R

Figure 4.7: Solutions for the two rotation matrices: Correct rotation R with the two positive
depths (a) and the wrong rotation R with one negative depth to the 3D-point (b).

where

Y =

0 −1 0
1 0 0
0 0 1

 and Z =

 0 1 0
−1 0 0
0 0 0

 (4.19)

The essential matrix E is a projective value and is, hence, defined up to an unknown scale factor.
In other words, the rotation matrix can be determined, but the length of the translation vector t
is only known up to an unknown scaling s > 0. Additionally, it can be seen that four possible
pairings of S and R are compatible with the essential matrix following Eq. 4.17 and Eq. 4.18
whereas only one solution is valid from the practical point of view. When using perspective
cameras, three solutions obtained from the extracted correspondences produce 3D-points that
lie behind one of the two cameras and only one that produces 3D-points lying in front of both
cameras. In this manner, the correct solution for the rotation and translation matrices can be
easily found for perspective cameras. However, this theorem is not suitable for omnidirectional
cameras due to the circumferential view of the camera allowing for observations of points in
front and behind the camera. Due to the mechanical device, however, the direction of the
translation vector t is well-known. This reduces the number of potential solutions since only the
correct rotation matrix R needs to be determined. Figure 4.7 illustrates two potential locations
of a 3D-point pn depending on the solutions for the rotation matrix R.

To select the correct rotation matrix R, the distance d1 from the lower camera position C0

and the distance d2 from the upper camera position C1 to each 3D-point pn are computed
considering both solutions of the rotation matrix. The correct rotation R along with the known
translation will produces positive depths both for d1 and for d2 for any selected point (see
Figure 4.7(a)). Wrong entries in the rotation matrix produce negative depths for d1 or d2 (see
Figure 4.7(b)). However, tracked correspondences are noisy so that even the correct rotation R
might cause negative depths. For this reason, Bunschoten [148] proposed selecting the solution
for the rotation R that yields the most positive depths from both camera viewpoints.
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(a) Intensity Image (b) Logarithmic Image

Figure 4.8: Intensity image (a) and logarithmic image (b) used for the selection of strong cor-
ners.

4.3.3 Feature point extraction

To determine and to refine the estimated camera pose, corresponding feature points of a 3D-
scene are extracted in a pair of stereo images. Feature points are directly tracked in original
images by the LKT feature tracker proposed by Kanade and Lucas [151] and by using the
C-implementation for the LKT implemented by Shi and Tomasi [152]. In many approaches,
feature tracking is performed in panoramic images [118]. Image transformation for applications
where only low resolution images are available leads to a loss of information in particular in
lower parts of panoramic images. Moreover, noise from the camera is amplified especially in
lower regions of panoramic images so that wrong features could be determined in panoramic
images. But the epipolar constraint derived for the parallel panoramic configuration is also valid
for point correspondences obtained in original images. For this reason, 2D-image coordinates
of detected feature points mn,i ↔ m0,i in original images can be transformed into 3D-world
coordinates using the camera model introduced in Section 2.2.

The LKT-feature tracker detects salient points by determining eigenvalues of local gradient
matrices and requires strong corners to obtain good tracking results. However, corners of objects
are rarely projected as strong corners into original images obtained by omnidirectional cameras.
Therefore, the sensitivity of the LKT feature tracker must be decreased to obtain good tracking
results. Consequently, disturbances are also detected and classified as valid feature points and
must, hence, be removed to precisely estimate the essential matrix. To achieve this, an algorithm
is proposed to select strong corners as feature point correspondences in pairs of original images
for camera pose refinement. Due to disturbances such as noise and a decreased sensitivity of the
LKT-tracker, neighboring pixels of a white wall may have different intensities and may hence
be detected as valid feature points. In order to avoid feature points caused by disturbances, the
algorithm transforms intensity images into the logarithmic domain in a first step.

Figure 4.8 illustrates an intensity image (see Figure 4.8(a)) and the corresponding logarithmic
image (see Figure 4.8(b)) used to select strong feature points. The intensity and the logarithmic
image captured from one position is called an image set. Feature points are extracted both in
intensity and in logarithmic images using the LKT-feature tracker. Strong features are corners
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that occur both in the logarithmic and in the intensity image at nearly the same image position.
The algorithm selects strong features and automatically removes weak features. Additionally,
the algorithm recovers previously selected features in the next image set that has been captured
at a new camera position. The 3D-world coordinates of strong feature points are computed and
are stored in a matrix if the feature points have been successfully extracted in all image sets
captured at different camera positions. The use of multiple image sets (> 2) improves feature
point extraction, since only strong features can be tracked over the entire image sequence. The
detected correspondences serve as an input for the 8-point algorithm.

The 8-point algorithm presented in the last section is very sensitive to noisy image correspon-
dences. Hartley et al. [149] proposed a normalization method for homogeneous image co-
ordinates to decrease the sensitivity of the 8-point algorithm to noisy image correspondences.
However, homogeneous image coordinates are not available, so that the method presented by
Hartley et al. is not suitable for this application. The 3D-vectors to the corresponding feature
points mn obtained at different camera positions are used instead (see above). Pajdla et al.
[153] proposed normalizing these vectors by dividing them by their length to better condition
the moment matrix M. In this manner, they demonstrated a decreasing sensitivity of the 8-
point algorithm against outliers and noise. Additionally, robust estimation techniques like Least
of Median Square, RANSAC [154] and M-estimator [155] allow to identify and to eliminate
outliers and, hence, to improve the pose estimation result.

Figure 4.9 illustrates strong feature point correspondences in a test scenario and the result-
ing epipolar lines after outlier removal. Figure 4.9(a) illustrates strong features that have been
detected in both the logarithmic and the intensity image. The tracking result is presented in
Figure 4.9(b), whereas true correspondences are highlighted in green and outliers in red. Fig-
ure 4.9(c) displays the resulting epipolar lines spanned by the (image) coordinates of corre-
sponding feature points tracked in a pair of original images. For the parallel panoramic config-
uration, these epipolar lines must meet in the projection center (green cross). However, the two
coordinate systems at pose C0 and C1 can be transformed into each other by a translation t and
a rotation R. In this manner, the epipolar lines do not meet in the projection center (see white
cross) and a virtual rectification must be performed to obtain a parallel panoramic configuration
instead.

4.3.4 Image rectification
Figure 4.6(b) illustrates a virtual parallel panoramic configuration generated for a non-parallel
stereo setup (see Figure 4.6(a)). For real configurations, the poses C0 and C1 are related by
means of a translation t and a rotation R. The real poses can be transformed into virtual poses
Cr0 and Cr1 to obtain a parallel panoramic configuration. In this configuration, the direction of
the z-axes of the virtual coordinate systems must be co-linear with the direction of the baseline.
A transformation function has to be found to align the real poses such a way that the z-axes of
the virtual poses are co-linear with respect to the baseline. The transformation can be computed
if the translation t and the rotation R between the real coordinate systems C0 and C1 are
known. In a first step, the rotation RrectC0 is computed that aligns the reference coordinate
system C0 to the direction of the baseline with respect to the z-axis of C0. With the rotation
RrectC0, the virtual coordinate system Cr0 is obtained from C0. Similarly, the rotation RrectC1
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(a) Extracted Correspondences (b) Valid Correspondences (green) (c) Epipolar Lines

Figure 4.9: Strong feature point correspondences (a) and the resulting epipolar lines after outlier
removal (b,c).

can be determined from the transformation RrectC0 and the rotation matrix R to transform the
coordinate system C1 into the virtual coordinate system Cr1. The rotation matrix R aligns the
two camera coordinate systems C0 and C1 and has been determined during the camera pose
estimation step.

Figure 4.10 illustrates a potential procedure to obtain the rotation matrix RrectC0 from the base-
line (translation vector t). The transformation of a coordinate system Cx into a rectified co-
ordinate system Crx can be performed using two rotation steps. After performing the rotation
steps, the direction of the z-axis of the new coordinate system is co-linear with the direction of
the baseline, viz. the direction of the translation vector t. To achieve this, two rotations – one
with respect to the z-axis and one with respect to the y-axis – are performed among others.

Let tox = [1 0 0]T be the reference axis for the computation of the first rotation matrix γ with
respect to the z-axis (see Figure 4.10(a)). The rotation γ and the corresponding rotation matrix
Rz(γ) can then be computed as follows:

γ = arccos

(
tT
ox · tPxy

|tox| · |tPxy|

)
(4.20)

The variable tPxy = [tx ty 0]T is referred to as the projection of the baseline t = [tx ty tz]
T

onto the xy-plane (see Figure 4.10(a)). To compute the second rotation, the translation t and
the vector of baseline must be transformed into a temporary coordinate system Rt:

tt = Rz(γ) · t (4.21)

The y-axis of the temporary coordinate system is referred as the reference axis in order to obtain
the second rotation β (see Figure 4.10(b)). The angle β spanned by the temporary translation tt

and the z-axis and, hence, the rotation matrix Ry(β) are computed as follows:

β = arccos

(
tT
oz · tPxz

|toz| · |tPxz|

)
(4.22)
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(a) (b) (c)

Figure 4.10: Determination of the rotation matrix RrectC0 for camera pose refinement.

Thereby, toz = [0 0 1]T and tPxz = [ttx 0 ttz]
T relate to the projection of the baseline tt =

[ttx tty ttz]
T onto the zx-plane (see Figure 4.10(b)) of the temporary coordinate system. Then,

the rotation matrices RrectC0 and RrectC1 for image rectification to obtain a parallel panoramic
configuration can be computed following Eq. 4.23 and Eq. 4.24:

RrectC0 = Ry(β) ·Rz(γ) (4.23)
RrectC1 = RrectC0 ·RT (4.24)

Figure 4.11 illustrates a pair of panoramic images for non-parallel panoramic configuration (see
Figure 4.11(a)) and the corresponding rectified pair of panoramic images using the virtually
parallel panoramic configuration (see Figure 4.11(b)). Disparities cannot be obtained for non
parallel panoramic configurations using 1D-vertical correspondence search along the image
columns. The (virtually) parallel panoramic configuration, however, enables the performance
of correspondence search in one dimension.

The length of the translation vector t, viz. the baseline length, which is required to determine the
3D-world coordinates of any 3D-scene point by triangulation, can be precisely estimated by the
translation sensor integrated within the camera platform. The coordinates of any 3D-scene point
obtained from the disparity maps, however, are computed for the virtual parallel panoramic
configurations and must, hence, be re-transformed into the original coordinate systems using
the transposed rotation matrix Rback = RT

rectC0.

4.4 Disparity map generation

Disparity map generation is the next step for obtaining 3D-ambiance information from a pair of
stereo images. A 1D-correspondence search can be performed along epipolar lines in panoramic
images obtained by cameras in a parallel panoramic configuration. The disparity δ is defined
as the pixel-wise difference in the image location of the same correspondence (3D-scene point)
seen in a pair of (panoramic) images. Therefore, stereo algorithms are designed to determine
disparity maps from pairs of images on which triangulation and 3D-scene reconstruction are
based. The extraction of correspondences and the generation of disparity maps are not possible
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(a) Non parallel panoramic configuration. (b) Parallel panoramic configuration.

Figure 4.11: Panoramic images from non-parallel panoramic configuration (a) and from a paral-
lel panoramic configuration (b). 1D-correspondence search along image columns
is performed for images satisfying the parallel panoramic configuration.

if one correspondence, which is viewable in one of the stereo images, is covered in the other
one. This is in particular the case for stereo setups that have a large baseline. In this application,
however, only a short baseline of 3.5cm between the two camera positions is required. The short
baseline allows to determining valid depth information for objects close to the camera system
only, but it overcomes the problem of covered correspondences in one of the stereo images.

Two methods exist to produce disparity maps from pairs of (rectified panoramic) images. One
that is based on corresponding features and one that is based on an area-based block matching
correspondence search [146]. The feature-based correspondence search is suitable for stereo
images containing many edges, corners and features based on square angles. The advantage
of feature-based algorithms is the use of a reduced amount of information within the pairs of
stereo images. Additional knowledge of the scene context is required in order to match such
features and to obtain geometric 3D-information of a scene. However, feature-based methods
do not provide dense disparity maps required for some applications.

In contrast to feature-based matching methods, area-based block-matching algorithms provide
dense disparity maps and can overcome the problem of providing additional knowledge of scene
context. Due to the huge number of data, however, block-matching algorithms require more
time for executing the generation of dense disparity maps.
In typical parking scenarios, objects such as parked cars or white walls typically do not have
strong features such as corners or square angles that can be used for matching. Due to miss-
ing features, block-matching algorithms have been preferred over feature-based matching al-
gorithms for this application. Moreover, the resolution of the camera system and thus of the
panoramic images is too low to extract sufficient numbers of strong features. Block matching
overcomes this limitation, and global optimization algorithms such as dynamic programming
[156, 146] or semi-global-matching [136] allow for a refinement and an estimation of disparity
information in less-textured and low-resolution panoramic images.
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4.4.1 Local correspondence search

The simplest way to establish correspondences in a pair of images is by performing a maximum
search or minimum search along 1D-epipolar lines using cost functions and block-matching
algorithms. Banks et al. provide a good overview and an evaluation of the commonly used
block-matching algorithms [157] that is briefly presented below. Figure 4.12 illustrates the
general procedure for extracting correspondences with a local search algorithm [14]. A search
window (template) with fixed block sizes MB and NB is generated for a certain image posi-
tion (mK , nK) and contains the intensities iR(m, n) of each pixel within that template. This
template is used to extract the corresponding template in the other image. Therefore, a target
block with the same dimensions as the template is shifted over the other image starting from
the position (mK , nK) to a position with the maximum distance δmax. At the same time, a
correlation value (matching cost) indicating the similarity between the template and the target
block is computed for each disparity δ using correlation-based functions. The correlation value
reaches its maximum/ minimum when the target block best matches the template block. The
process described here is called local correspondence search using block-matching and is used
to establish correspondences for each pixel in a pair of stereo images.

Eq. 4.25 represents a general function for computing the similarity s between a template and a
target block. Index p represents the norm of the similarity function s and iL, iR are the intensities
of pixels used for computation in the left and right images.

sp(m, n) =

MB∑
mB=1

NB∑
nB=1

[
iR(m + mB, n + nB)− iL(m + mB, n + δ(m, n) + nB)

]p
(4.25)

with δ(m, n) = 0 . . . δmax (4.26)

The similarity is computed for all disparities within a fixed disparity range [0 .. δmax] (see
Eq. 4.26). The most probable disparity is the one where the (similarity) error between the
template and search block is minimal (see Eq. 4.27).

δ(m, n)opt = arg min
δ(m,n)

[s(m, n)] (4.27)

SAD, SSD and NCC

Many cost functions exist for computing the similarity between a reference and a target block.
One of these functions is the SAD - cost function. Block-matching algorithms based on SAD
(sum of absolute differences) use the absolute differences of intensities within a fixed block.
SAD sums up intensities values for each pixel within one block. Two blocks are similar if
the differences between the target and the reference block are minimal. Eq. 4.28 presents a
mathematical expression for SAD:

sSAD(m, n) =

MB∑
mB=1

NB∑
nB=1

[
iR(m + mB, n + nB)− iL(m + mB, n + δ(m, n) + nB)

]
(4.28)
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Figure 4.12: Block-matching with a block size of 9·9 pixels [14].

where parameter p is set to unity. In other words, the values of sSAD(m, n) become minimal
when the target block best matches the template block at a certain disparity δ(m, n).

Similarly to block-matching algorithms based on SAD, other block-matching algorithms use
the sum of squared differences (SSD) to penalize large differences between pixels and to better
obtain a global minimum following Eq. 4.29:

sSSD(m, n) =

MB∑
mB=1

NB∑
nB=1

[
iR(m + mB, n + nB)− iL(m + mB, n + δ(m, n) + nB)

]2
(4.29)

Eq. 4.29 can be reorganized to obtain terms that relate to the energy and similarity of the blocks.

sSSD(m, n) =

MB∑
mB=1

NB∑
nB=1

[
iR(m + mB, n + nB)

]2
+

MB∑
mB=1

NB∑
nB=1

[
iL(m + mB, n + δ(m, n) + nB)

]2
− (4.30)

2 ·

(
MB∑

mB=1

NB∑
nB=1

[
iR(m + mB, n + nB) · iL(m + mB, n + δ(m, n) + nB)

])

The first two terms of Eq. 4.30 describe the energy and the third term the similarity between
the target and the reference block [146]. However, the energy-related terms of the cost function
strongly influence the results whereas the third term provides useful information for indicating
the similarity between two blocks only. For this reason, the normalized cross correlation (NCC)
has been introduced to make cost functions independent of the energy of the target and template
blocks by normalizing the third term of Eq. 4.30 with the energy of the image blocks:

sSSD(m, n) =

∑MB

mB=1

∑NB

nB=1

[
iR(m + mB, n + nB) · iL(m + mB, n + δ(m, n) + nB)

]
√PMB

mB=1

PNB
nB=1

[
iR(m+mB ,n+nB)

]2

+
PMB

mB=1

PNB
nB=1

[
iL(m+mB ,n+δ(m,n)+nB)

]2
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(4.31)

In contrast to SAD and SSD, cost functions based on NCC have a maximum at the disparity
δ(m, n) when the target block best matches the template block.

Zero-mean correlation functions (ZSAD, ZSSD, ZNCC)

Different illumination conditions cause offsets in the intensity values of stereo images and may
lead to poor minimization and maximization result for SAD, SSD and NCC-based cost func-
tions. This influence can be reduced by subtracting the mean intensity of a target block from the
intensities of each pixel within a block before computing the similarity. In Eq. 4.32, formalism
is presented as an example for the SAD correlation function for subtracting the mean-intensity
value of a block from the intensity values of the pixels within the block. The new function
obtained is called the ZSAD-cost-function (zero-mean sum of absolute differences).

sSAD(m,n) =
MB∑

mB=1

NB∑
nB=1

[(
iR(m+mB ,n+nB)−iR(m,n)

)
−
(
iL(m+mB ,n+δ(m,n)+nB)−iL(m,n)

)]
(4.32)

where

iR(m,n) =
1

MB ·NB
·

MB∑
mB=1

NB∑
nB=1

[
iR(m + mB, n + nB)

]
(4.33)

and

iL(m,n) =
1

MB ·NB
·

MB∑
mB=1

NB∑
nB=1

[
iL(m + mB, n + δ(m,n) + nB)

]
(4.34)

Similarly to the ZSAD, subtracting the mean value is also performed for SSD-based and NCC-
based correlation functions (ZSSD, ZNCC).

Rank transformation

Cost functions such as SAD, SSD or ZNCC can use intensity values to compute the similarity
between target and reference blocks. However, a common method to increase the robustness
of local correspondence search algorithms is transforming intensity-based target and reference
blocks into lighting invariant blocks. For this purpose, the rank transformation (TRank) is suit-
able for transforming the intensity value of each pixel into intensity independent values. The
transformation replaces the intensity of target pixels by a value that indicates the number of
neighboring pixels within a block MRank · NRank having lower intensity values than the target
pixel. The block size of the rank transformation can differ from the block size of target and
template blocks for computing the similarity. A pixel can take the following values after rank
transformation: [0 . . . (MRank ·NRank − 1)]. The disparity of each pixel can then be established
by determining the similarity between a target and a reference block using block matching al-
gorithms based on cost functions such as SAD or NCC [158].
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Census transformation

Similarly to the Rank-transformation, the Census-transformation (TCensus) also replaces intensity-
based values of image pixels by intensity-independent values [158]. The new value computed
for an image pixel relates to a bit vector whose entries (bit positions) describe the intensities
of target pixels relative to a reference pixel. In other words, a bit in this vector is set to one if
the intensity value of the corresponding pixel is lower than the intensity value of the reference
pixel and zero otherwise. The length of the vector is (MCensus ·NCensus− 1) and represents the
number of pixels within a transformation block with size MCensus · NCensus. Disparity maps
can be computed from the census-transformed pixel values and by means of a block-matching
algorithm whose cost function is based on the Hamming distance sHamm (see Eq. 4.35). The
Hamming distance indicates the number of bits in a vector that differ from the bits in another
vector with the same length.

sHamm(m, n) =

MB∑
mB=1

NB∑
nB=1

[
DHamming

(
TCensus,R(m+mB ,n+nB)−TCensus,L(m+mB ,n+δ(m,n)+nB)

)]
(4.35)

4.4.2 Global correspondence search

Local matching methods are based on correlation functions and can have very efficient im-
plementations. However, these methods assume continuous disparities along an epipolar line.
This assumption is not fulfilled at discontinuities in images such as object borders and leads to
blurred object boundaries. This effect can be reduced by certain techniques [156] but cannot
be eliminated [136]. Global matching algorithms can overcome this limitation by optimizing
disparities obtained that were computed by local correspondence search algorithms and by in-
corporating constraints for unambiguous matching. Ambiguities are resolved by considering
global information and constraints such as the uniqueness constraint. The uniqueness con-
straint describes the fact that only one valid correspondence can be found in a target image for
a correspondence established in a reference image.

Global correspondence search methods incorporate previously obtained information and stereo
constraints such as the uniqueness constraint or the continuity constraint in the optimization
procedure and introduce energy functions for minimizing the total energy of matching costs in
order to determine optimal disparity maps [156]. This is an advantage over local correspon-
dence search algorithms and increases the robustness in estimating true disparities in pairs of
stereo images. Blurred boundaries of objects can be avoided. However, global search meth-
ods are more complex than local correspondence search methods due to their optimization and
refinement algorithms. These algorithms are able to generate robust disparity maps from cost
values obtained by a local correspondence search algorithm.

Very popular global matching algorithms are based on dynamic programming. Dynamic pro-
gramming was introduced by Richard Bellman [159] to solve complex problems in mathemat-
ics and in computer science. The idea of dynamic programming is to break complex problems
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down into simpler steps. Although dynamic programming is performed along the epipolar lines
in stereo vision, it is nevertheless referred to as a global matching method. Point candidates
are extracted along epipolar lines in rectified images and are checked against each other to find
true image correspondence. The cost values for each disparity δ of a correspondence are stored
in a cost matrix when performing local correspondence search. The best path through the cost
matrix can be found by the dynamic programming algorithm by means of minimizing the costs
of the disparities along the epipolar lines [160, 144, 146, 161, 162]. A prerequisite for dynamic
programming is the ordering constraint describing the fact that true correspondences must have
the same order in each pair of stereo images [146]. Dynamic programming is a powerful global
search method and is suitable for closing gaps in disparity maps caused by local correspondence
search methods due to missing textures. The generation of streaking artifacts is the limitation of
stereo algorithms based on dynamic programming. Streaking artifacts are caused by disparity
optimizations along individual image rows and particularly appear in disparity maps obtained
from low textured panoramic images. In this case, the optimization process does not consider
disparities of neighboring image rows in 2D that may be useful for increasing the robustness in
generating disparity maps.

In general, stereo algorithms based on dynamic programming optimize correspondence search
along one particular search direction by assuming the continuity constraint. Other algorithms
and methods extend this approach by also assuming valid continuity constraints for other direc-
tions. Zitnick et al. [163] proposed a cooperative correspondence search algorithm that uses the
continuity constraint for both vertical and horizontal search directions. This algorithm performs
optimization over the whole stereo image and especially considers the influence of valid pixel
correspondences to neighboring pixel correspondences. Similar to dynamic programming, their
algorithm iteratively optimizes 3D cost matrices [u, v, d] assuming the uniqueness and the
continuity constraint. The optimization process stops when a unique maximum or minimum
has been established [144].

4.4.3 Semi-global matching

A very recent, robust global stereo algorithm technique has been proposed by Hirschmüller
[136, 106]. The main purpose of this algorithm is to aggregate matching costs and to consider
constraints from all search directions equally in order to minimize the energy of the matching
costs over the whole image. The algorithm computes path costs L(p, d) for a certain number of
paths p as a first step. The disparity d of a correspondence at an image position is determined
by minimizing the accumulated path costs S(p, d) of all 1D search paths p. The path costs
are computed for each disparity d. In that context, each path starts at an outer image pixel and
ends at the target image position. Hirschmüller mentioned that only the path costs are required
for disparity computation and not the path itself. Due to a path search over the whole image,
the algorithm is called semi-global matching. Figure 4.13 illustrates the aggregation of path
costs for four and for eight search paths. However, semi-global matching does not consider the
ordering constraint. The ordering constraint can only be fulfilled for paths that coincide with the
epipolar lines. Hence, semi-global matching relates more to a scan-line optimization algorithm
[136]. The computation of correlation costs using local matching methods can lead to wrongly
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Figure 4.13: Aggregation of cost for four (left) and eight (right) search paths.

determined point correspondences in pairs of stereo images. Due to image noise or illumination
changes within the search windows, wrong matches may have lower costs than correct matches
and may, hence, be classified as true correspondences. Semi-global matching overcomes this
problem by introducing a consistency constraint that is also used to resolve ambiguities. The
constraint is formulated recursively by defining path costs Lr(r, d) along fixed search paths r
[164]. Lr is referred to as the path cost in a certain direction r and Lr(p, d) is referred to as the
cost value of a position p for a disparity d. The costs Lr(p, d) are computed as follows.

Lr(p, d) = C(p, d) + min


Lr(p− r, d),
Lr(p− r, d + 1) + P1,
Lr(p− r, d− 1) + P1,
min

l
Lr(p− r, l) + P2

−min
l

Lr(p− r, l) (4.36)

where l ∈ [0, dmax]. C(p, d) is referred as the pixel by pixel matching cost of a pixel p for
a disparity d. The costs C(p, d) can be computed by using local matching methods based on
SAD, SSD, NCC, RANK or mutual information. In this application, the matching costs are
computed by using a SAD-based cost function and RANK-transformed stereo input images.
The second term of Eq. 4.36 selects the minimum values of previously computed path costs at
the pixel positions p − r for several disparities (d + 1) and (d − 1) and aggregates the chosen
value to the path costs.

Hirschmüller proposes the penalties P1 and P2 for reducing the influence of discontinuities
caused by image noise and for stressing the consistency constraint. Different values of the
penalties can be chosen to distinguish between small discontinuities caused by slanted or curved
surfaces (P1) and large discontinuities caused by outliers in the disparity map (P2). The penal-
ties stress the consistency constraint and can also be used to adjust the smoothness of disparity
maps. Large values of the penalties lead to smooth disparity maps since noise in the disparity
maps caused by disturbances is mostly suppressed. The disparity maps contain more details
when choosing lower values for the penalties, but also contain more noise and outliers. In gen-
eral, large intensity differences of pixels along a search path r come along with discontinuities
in disparity maps. Therefore, an intensity gradient has been proposed to automatically adjust
the penalty P2 to potential discontinuities [136, 164].

P2 =
P ′

2

|I(p)− I(p− r)|
(4.37)
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where P ′
2 is a fixed constant with P ′

2 ≤ P1. In other words, the algorithm considers discontinu-
ities potentially caused by object boundaries and decreases the penalty P2 when detecting large
intensity gradients. Additionally, edge images generated from the panoramic images can be
used to predict potential discontinuities and to adapt the penalty P2 to take objects’ boundaries
into account. The last term min

l
Lr(p − r, l) in Eq. 4.36 prevents a continuous increase of the

path costs Lr(p, d) along the search path r. This term is a constant for all disparities at a pixel
position p and does not change the location of a potential minimum/ maximum in the disparity
space. After path cost computation, the sum Sr,d over all paths r is computed for each disparity
d following Eq.4.38.

S(p, d) =
∑

r

Lr(p, d) (4.38)

The disparity at a pixel position is determined by selecting the disparity d that corresponds to
the minimum or maximum costs. A quadric curve can be interpolated across the cost values of
neighboring disparities to obtain sub-pixel accuracy (see Eq. 4.39, [136]).

dsub = d +
S(p, d + 1)− S(p, d + 1)

2 · S(p, d− 1)− 4 · S(p, d)− 2 · S(p, d + 1)
(4.39)

In stereo vision, each disparity image corresponds to a reference image. This dependency can
be used to perform a simple consistency check for enforcing the uniqueness constraint. For
this purpose, the disparity map Dup relating to the upper panoramic image and the disparity
map Dlo relating to the lower panoramic image are computed. Each disparity Dupp at a pixel
position p in the disparity map Dup is compared with the corresponding disparity Dlop from the
disparity map Dlo. The resulting disparity is set to zero when the disparities of both disparity
maps differ.

4.5 Generation of 3D-ambiance information

4.5.1 Triangulation

The disparity maps obtained from a stereo setup can be used to compute 3D ambiance informa-
tion by means of triangulation. Triangulation is the process of determining the location and the
distance to a 3D point by measuring two angles θ and ρ to this point from at least two distinct
positions A and B. The distance ∆Z between these two positions A and B is called the baseline
length and must be known. The points A, B and P span a triangle with one known side length
∆Z and two known angles θ and ρ. For this reason, the length of vector pu with d2 = |pu| from
point A to P and the length of vector pl with d1 = |pl| from point B to P can be computed
using triangulation (see Figure 4.14).

In technical applications, optical 3D measuring systems use at least one camera as one of the
two sensors for triangulation. The other device can be a light projector, an additional camera or
the same camera used to measure the angles to a scene point from several positions. Triangu-
lation is also suitable for generating 3D ambiance information with omnidirectional cameras if
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ΔZ P

B

A

r

q

Pl

Pu

Orientation

axis

Figure 4.14: Stereo setup with omnidirectional cameras suitable for obtaining distance informa-
tion by triangulation [14].

correspondences to 3D scene points can be obtained from images captured at different camera
poses. In this application, the distance d1 from the camera position B to a point P has to be
determined. In this configuration, position B relates to the lower position of the camera plat-
form. The advantage of determining the distance d1 from the lower camera position to the point
P is in the precise calibration of the camera coordinate system to the car coordinate system.
Following the law of sine [165], Eq. 4.40 is valid for all plain triangles:

d1

sin(θ)
=

d2

sin(ρ)
=

∆Z

sin(ϕ)
(4.40)

Eq. 4.40 can be reorganized to compute both the distances d1 and d2 depending on the baseline
length ∆Z and the two angles θ and ρ. Eq. 4.41 presents an expression for the distance d1 from
B to P and for the distance d2 from A to P :

d1 = sin(θ) · ∆Z

sin(ϕ)
and d2 = sin(ρ) · ∆Z

sin(ϕ)
(4.41)

with ϕ = 180− ρ− θ. The vectors pl and pu in world coordinates can be estimated if the cali-
bration data of the camera and the sensor coordinates of the point correspondences are available.
With this information, angles θ and ρ are computed as follows:

ρ = 90◦ − arctan

 z ~pu√
x2

~pu
+ y2

~pu

 θ = 90◦ + arctan

 z ~po√
x2

~po
+ y2

~po

 (4.42)

Images correspondences obtained from rectified, spherical panoramic images are used in this
application: Each pixel in a spherical image represents both a vertical and a horizontal solid
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angle. Both are suitable for triangulation. For this reason, an expression can be derived to
directly determine the length of the vectors d1 and d2 from the elevation angles θ and ρ and
from the disparities δP obtained from a disparity map. For spherical panoramic images, the
angles θ and ρ can be directly determined from the image rows. In other words, the rows in
the rectified image captured at the upper platform position represent the solid angles θ whereas
the rows in the image captured at the lower position represent the solid angles ρ. The tilting
offset βoffset of the projection area and the number of vertical pixels N in a rectified image are
obtained from the calibration data and from the rectification process. Eq. 4.43 defines then the
vertical angle βP to a scene point P as seen in the spherical projection area:

βP =

(
βoffset +

β

2

)
−
(

β

N
· n
)

(4.43)

The angle βP is also called the elevation angle whose direction is defined anti-clockwise be-
ginning at the x-axis of the image coordinate system. θ and ρ can then be computed following
Eq. 4.44 and Eq. 4.45:

ρP = 90◦ −
(

βoffset +
β

2

)
+

(
β

N
· nl

)
(4.44)

θP = 90◦ +

(
βoffset +

β

2

)
−
(

β

N
· nu

)
(4.45)

with

ρP = 90◦ − βP l

θP = 90◦ + βP u (4.46)

Value nl represents the image rows of the lower camera system and nu the image rows of the
upper camera system. However, this assumption is only valid for identical projection parameters
for both the upper and lower camera system. Using ϕ = 180 − ρ − θ, Eq. 4.47 represents an
expression to obtain angle ϕ

ϕP =

(
βoffset +

β

2

)
−
(

β

N
· nl

)
−
(

βoffset +
β

2

)
+

(
β

N
· nu

)
(4.47)

which is reduced to Eq. 4.48:

ϕP =

(
β

N

)
· (nu − nl) mit (4.48)

The disparity δP of correspondences in a pair of spherical panoramic images for a point P is
defined as follows.

δP = nu − nl (4.49)

whereas ∆β = β
N

is defined as the vertical solid angle. Starting with Eq. 4.41 and using
Eq. 4.48, an expression can be derived to compute the length of vector d1 = |pl| as follows:

d1P = sin(θP ) · ∆Z

sin(δP ·∆β)
with θP = 90◦ +

(
βoffset +

β

2

)
− (∆β · no) (4.50)
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After reorganizing Eq. 4.50, Eq. 4.51 describes an expression to determine d1.

d1P = cos

((
βoffset +

β

2

)
− (∆β · no)

)
· ∆Z

sin(δP ·∆β)
(4.51)

The argument of the cosine function in Eq. 4.51 corresponds to the angle βP to a scene point
P as seen by the upper camera system (see Eq. 4.42). Finally, Eq. 4.52 gives an expression
for estimating the distance d1 from the projection center of the lower camera system to a scene
point P using spherical panoramic images.

d1P = cos (βP u) ·
∆Z

sin(δP ·∆β)
(4.52)

4.5.2 Disparity map reduction

The proposed algorithm uses extracted disparity maps to obtain 3D information about objects
in the surroundings of the car door. The 3D information serves as input to the car door control
unit that enables or stops car door operations in order to avoid collisions with obstacles next to
the door. Clearly, the control unit computes the risk of potential collisions with static objects
and generates collision-free motion sequences to safely operate the door. For this purpose, the
control unit requires 3D-ambiance information in form of spherical or rectangular bounding
boxes. These bounding boxes represent the 3D-geometry of the ambiance close to the door
and are used for generating opening paths and motion sequences to safely open the car door.
Theoretically, each pixel in a disparity map could be used to compute the location of a 3D
scene point and its distance to the car. But even small disparity maps with 480 × 204 pixels
would generate 97920 bounding boxes that would overlap each other due to their fixed size.
Moreover, the control unit must compute door opening paths in real-time. For this reason, only
few bounding boxes can be used for representing obstacles close to the car. Consequently, a
rough 3D model of the ambiance close to the door is sufficient for collision avoidance in this
application. Besides, other applications such as augmented reality or telepresence [144] require
detailed geometric 3D information and texture for scene reconstruction.

Even small disparity maps provide dense depth information that is not required when using
bounding boxes for roughly modeling the ambiance close to the car. Thus, the resolution of
the disparity maps can be reduced and hence the resulting number of bounding boxes. When
reducing the disparity maps, it is important to consider objects that are located close to the
car door. Correspondences of such objects have larger disparity values than correspondences
of objects having larger distances to the car. Therefore, a maximum reduction scheme can be
performed to preserve large disparity values of objects located close to the door. Figure 4.15(a)
illustrates the maximum reduction scheme for dense disparity maps using reduction windows
with sizes MRed and NRed. However, one limitation of the maximum-based reduction scheme
is the direct mapping of outliers, which can have very large disparity values, into the reduced
disparity map. To overcome this limitation, a median-based reduction scheme could be used to
suppress outliers in disparity maps.
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Figure 4.15: Disparity map reduction using a maximum-based reduction scheme (a) and a
median-based reduction scheme (b) [14].

(a) Original Disparity Map (b) Maximum Reduction (c) Median Reduction

Figure 4.16: Reduction of disparity maps (a) using maximum reduction (b) and median reduc-
tion (c).

Figure 4.15(b) illustrates the median-based reduction scheme to better suppress outliers in dis-
parity maps. But disparities of small objects close to the car door might also be suppressed
by the median-based reduction scheme. Figure 4.16 illustrates the maximum and the median
reduction for an exemplary disparity map (see Figure 4.16(a)) using a reduction window with
a 4 × 4 pixel size. The maximum-based reduction scheme directly maps large disparity values
to target disparity maps. Consequently, noisy disparities caused by disturbances are directly
mapped into the final disparity map and object boundaries are increased (see Figure 4.16(b)).
Median reduction can better preserve object boundaries and decreases the influence of outliers
on the reduced disparity map (see Figure 4.16(c)).

However, disparity maps must not be reduced when information of the quantization error (see
Section 4.6.1) is required for further processing stages. The reduction process would falsify
the computation of the quantization error intervals caused by a change of the resolution in
panoramic images and also by a change of the resolution of the solid angles. A distance infor-
mation map must be computed from the disparity map instead and the resolution of the distance
map can be reduced to decrease the total number of bounding boxes. In this case, a minimum-
based reduction method must be applied for selecting the least distances in a set of different
distance values. In stereo vision, large disparity values relate to short distances between a cam-
era and the objects and vice versa.
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4.5.3 Bounding box refinement

Disparity maps obtained from low resolution panoramic images may contain inhomogeneities
and outliers. In particular, less textured regions and image noise lead to many wrongly deter-
mined disparities and hence to wrongly computed locations of bounding boxes for ambiance
modeling. These disturbances must be removed in order to increase the robustness of the
ambiance modeling algorithm. One way to overcome these disturbances is post-processing
the disparity maps using median-filters or morphologic image operators [144]. Unfortunately,
such post-processing methods are not suitable for disparity maps obtained from low resolution
panoramic images. Disparities of small objects are wrongly misclassified as disturbances and
are removed. Another difficulty is in determining valid ambiance information from less tex-
tured objects such as white walls in a parking garage. No useful disparities can be generated
for such regions. Geometric information of the ambiance next to the car-door could be used
instead for both generating distance information about less-textured regions and for bounding
box refinement. For the most common parking situations, there are many objects such as walls
or flower boxes that touch the ground and whose surfaces are assumed to be perpendicular to
the floor. Additional 3D information can be obtained from edges appearing in images when an
object is in contact with the ground. The 3D location of these edges can be precisely computed
by means of triangulation and may be used for the bounding-box refinement stage.

For this purpose, the x, y coordinates of edge information and the x, y coordinates of objects
in contact with the ground and whose surface orientations are perpendicular to the orienta-
tion of the ground are assumed to be similar. The refinement stage uses this assumption to
remove outliers in the bounding boxes. Clearly, bounding boxes are classified as outliers and
are removed if they are located beyond a specified distance ±∆out from the coordinates x, y.
But this condition is not suitable for objects with slanted surfaces or for objects that do not
touch the floor – e.g. baskets attached to light posts. In order to avoid wrong refinement re-
sults, the refinement stage tries to detect bounding boxes that relate to slanted surfaces based
on the disparity maps. Additionally, it preselects bounding boxes by restricting the search area
(x±∆in, y ±∆in), ∆in > ∆out depending on the edge/floor coordinates x, y.

Figure 4.17 illustrates the bounding box refinement state for a parking scenario where a car is
parked close to a wall. Bounding boxes and the edge between the floor and the wall are obtained
from the disparity map and from a panoramic image. Outliers and disturbances are then detected
and removed to better approximate the surface of objects by means of the bounding boxes.

4.6 Error estimation

This section analyzes the quantization and the calibration error intervals for stereo applications
with omnidirectional cameras. Both errors are suitable for determining the accuracy of 3D
data obtained from disparity maps (bounding boxes). The calibration error depends on the re-
projection error caused by approximating the mirror function when calibrating omnidirectional
cameras. The quantization error depends on the camera resolution and on the resolution of
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Figure 4.17: Bounding box refinement stage that is based on edge/floor information of objects
located on the floor.

disparity maps. These errors have been described by Florian Böhm [14] in his masterthesis and
are briefly presented below.

4.6.1 Quantization error

The quantization error is a measure for indicating differences between analoque values and the
corresponding quantized digital values. This error is caused by rounding or truncation. There
are two quantization errors in image processing – one that occurs when digitalizing the analoque
intensity of an image pixel into a discrete value and one caused by the resolution of the camera.
In this thesis, the position error of determined 3D data is called the quantization error of the
disparity. The error is caused by a limited resolution of disparity maps and also by the resolution
of the disparity values obtained from a stereo algorithm. The quantization error of the disparity
d1Q and of a point P at an image position P (m, n) can be described in spherical coordinates
(αQ, βQ) (see Eq. 4.53).

[αQ,min . . . αQ,max] = αP ±
∆α

2

[βQ,min . . . βQ,max] = βP ±
∆β

2
(4.53)

[d1,Q,min . . . d1,Q,max] =

[
d1

(
δP +

∆δQ

2

)
. . . d1

(
δP −

∆δQ

2

)]
The solid angles ∆α and ∆β in a panoramic image depend on the resolution of the images.
Additionally, ∆δQ describes the resolution of the disparity and depends on the accuracy of the
chosen stereo algorithm. The accuracy of ∆δQ is less than unity for stereo algorithms with sub-
pixel accuracy and equal to or larger than unity for stereo algorithms with an accuracy of one
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pixel. For spherical projections, the minimum and maximum distances d1,Q,min and d1,Q,max of
the distance error interval ∆d1Q can be computed following Eq. 4.54 and Eq. 4.55 and depend
on the resolution of the disparities ∆δQ. Thereby, the quantization error of the elevation angle
βP can be neglected due to ∆d1Q � ∆βP for common omnidirectional cameras.

d1,Q,min = d1

(
δP +

1

2

)
= cos (βP ) · ∆Z

sin
(
(δP + 0, 5∆δQ) ·∆β

) (4.54)

d1,Q,max = d1

(
δP −

1

2

)
= cos (βP ) · ∆Z

sin
(
(δP − 0, 5∆δQ) ·∆β

) (4.55)

Clearly, the distance error interval ∆d1Q denotes an interval within which distance values are
represented by the same disparity value. This interval is not symmetrical to the distance d1 and
its size depends on the upper and on the lower boundaries of the distance values d1,Q,min and
d1,Q,max (see Eq. 4.56).

∆d1Q = d1,Q,max − d1,Q,min (4.56)

Eq. 4.57 represents the quantization error interval ∆d1Q in spherical coordinates.

∆d1Q = cos (βP ) · ∆Z

sin
(
(δP − 0, 5) ·∆β

) − cos (βP ) · ∆Z

sin
(
(δP + 0, 5) ·∆β

) (4.57)

After reorganizing Eq. 4.57, Eq. 4.58 presents the quantization error interval ∆d1Q that depends
on the resolution of the disparity ∆δQ, on the elevation angle, on the disparity and on the
baseline length ∆Z (see Eq. 4.58).

∆d1Q = cos (βP ) ·∆Z ·

(
1

sin
(
(δP − 0, 5∆δQ) ·∆β

) − 1

sin
(
(δP + 0, 5∆δQ) ·∆β

)) (4.58)

In this equation, the quantization error is represented in spherical coordinates. However, it is
also available for other projections like cylindrical, conical or plane projections.

4.6.2 Calibration error

The quantization error is used to determining the accuracy of re-computed 3D data from scene
points P . Besides, the quality of the camera calibration, in particular the approximation of the
mirror function, influences the accuracy of computed distances between scene points P and the
projection center of the camera. The calibration process proposed by Scaramuzza [27] allows
for the determination of a mean camera calibration error Ecalib for omnidirectional cameras.
The accuracy of the camera model can only be estimated up to a minimum error due to mis-
alignments and inaccuracies of the mirrors. The re-projection error is determined by computing
the differences between the true positions of chessboard corners and the re-projected positions
of chessboard corners in calibration images – the mean re-projection error obtained from all
chessboard corners is defined as the calibration error for omnidirectional cameras [27]. The
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4.6 Error estimation

calibration error indicates the quality of the camera calibration and is valid for all pixels in
original images. The calibration error of an ideal camera system is zero.

Additionally, the pixel density σ can be used for determining the calibration error of pixels in
rectified panoramic images. The pixel density is a value for indicating the number of sensor
pixels that are projected onto a pixel position in panoramic images for certain projections. The
pixel density depends on the projection type of panoramic images and on the pixel positions
in rectified images. Hence, the pixel density also influences the accuracy of 3D information
obtained from an image point P (n, m) and must be considered. Eq. 4.59 describes the error
intervals in spherical coordinates caused by the calibration error.

[αC,min . . . αC,max] = αP ±
∆αC

2

[βC,min . . . βC,max] = βP ±
∆βC

2
(4.59)

[d1C,min . . . d1C,max] =

[
d1

(
δP +

∆δC

2

)
. . . d1

(
δP −

∆δC

2

)]
The error intervals of the horizontal and vertical angles ∆αC and ∆βC can be directly computed
by dividing the calibration error Ecalib by the horizontal and the vertical pixel densities σP,h and
σP,v.

∆αC =
Ecalib

σP,h

·∆α

∆βC =
Ecalib

σP,v

·∆β (4.60)

Again, the calibration error influences the error intervals and depends on the chosen projection
and on the position P of the point correspondences in panoramic images. For the spherical
projection, Eq. 4.62 considers this by combining Eq. 4.59 and Eq. 4.60 as follows.

[αC,min . . . αC,max] = αP ±
(

Ecalib

σP,h

· ∆α

2

)
[βC,min . . . βC,max] = βP ±

(
Ecalib

σP,v

· ∆β

2

)
(4.61)

[d1C,min . . . d1C,max] =

[
d1

(
δP +

∆δC

2

)
. . . d1

(
δP −

∆δC

2

)]

In contrast to the quantization error intervals, symmetrical distance error intervals [αC,min, αC,max]
and [βC,min, βC,max] are assumed for error estimation in order to facilitate their derivation. The
distance error interval ∆δC of a disparity is estimated under the assumption of identical mirrors
and hence of an identical calibration error for omnidirectional cameras used in a stereo-setup.
This assumption can always be met in motion stereo applications due to the same camera
moved to different poses. Otherwise, the twofold calibration error of the elevation angles must
be considered when estimating the distance error of the disparity. However, the assumptions
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presented above can only be fulfilled for small disparities due to the position-dependent values
of the pixel density σ. In this application, this can be guaranteed by the small baseline length
(≈ 3.5cm) and by the resulting disparity range of at most 30pixels. If the stereo-camera system
had a baseline length larger than 5cm, then the pixel density for each camera system or at each
pose would have to be considered for precisely estimating the influence of the calibration error
to the disparity. Eq. 4.62 presents an expression that describes the influence of the calibration
error Ecalib on the disparity ∆δC .

∆δC = 2 · Ecalib

σP,v

(4.62)

Similarly to Eq. 4.54 and Eq. 4.55, the minimum distance d1,min,C and the maximum distance
d1,max,C can be computed following Eq. 4.63 and Eq. 4.64. The influence of the calibration error
Ecalib on the elevation angle βP is negligible due to ∆δC � ∆βP for common omnidirectional
cameras.

d1min,C = d1P

(
δP +

∆δC

2

)
= cos (βP ) · ∆Z

sin
(
(δP + ∆δC) ·∆β

) (4.63)

d1max,C = d1P

(
δP −

∆δC

2

)
= cos (βP ) · ∆Z

sin
(
(δP −∆δC) ·∆β

) (4.64)

The maximum disparity error ∆δC is subtracted from δp within the sin arguments of the terms
of the maximum distance d1,max,C (see Eq. 4.55) and of the maximum distance d1,max,Q (see
Eq. 4.64). Disparity values of scene points with infinite distances are zero. This case must be
considered by means of an automatic quantization and calibration error estimation algorithm,
since subtraction would lead to negative disparities.

4.7 Results

In this section, the results of the proposed ambiance detection algorithm are presented and
discussed. Section 4.7.2 analyzes and discusses the influence on the calibration error and the
quantization error to distance estimation. The calibration and quantization error depend on the
chosen projection for panoramic images, and the results obtained for spheric, conic and cylin-
dric projection are studied and discussed. Section 4.7.3 illustrates the disparity maps generated
from low-resolution panoramic images using the semi-global matching stereo algorithm [136].
Experiments were conducted for four test scenarios and their disparity maps were computed.
The results obtained were compared with disparity maps generated by a stereo algorithm based
on dynamic programming [144]. The resulting 3D information (bounding boxes) for the four
test scenarios is presented in Section 4.7.4. Experiments with ground truth data were also con-
ducted to determine the accuracy of the position of the bounding boxes. This sections ends with
a presentation of the results obtained for the bounding box refinement stage and the execution
times for generating ambiance information.

In this section, the influences of the calibration and the quantization error on distance estimation
based on stereo vision is analyzed. The calibration error is independent of the chosen projection
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whereas the quantization error depends on the chosen projection. Experiments are conducted
to analyze the properties of the quantization error using cylindric, spheric and conic projections
for panoramic images. The projections are also suitable for studying the properties and the
accuracies of disparity maps obtained from a pair of panoramic images. For this purpose, a
simulated parallel panoramic configuration with a baseline length of ∆Z = 5cm is used. Stud-
ies illustrated no significant differences in the results obtained from experiments using real- or
simulated data: Therefore, data from a simulated camera system were preferred over data from
a real camera system to better illustrate the results.

Figure 4.18(a) illustrates a simulated scenario used for analyzing and illustrating the calibra-
tion and quantization error. Figure 4.18(b) displays the locations of determined bounding boxes
(yellow spheres) and the corresponding calibration error intervals (red cylinders). The calibra-
tion error is independent of the chosen projection and indicates the quality of camera calibration
[26]. The calibration error obtained by means of camera calibration causes a distance interval in
which 3D points can be located for a certain disparity. The calibration error of an ideal camera
system is zero. Similarly, the quantization error arises due to the limited resolution of the cam-
era sensor and, hence, of the limited resolution of solid angles as seen by the camera system.
The quantization error interval represents the dimensions of a 3D area in which a reconstructed
3D scene point can be located for a certain disparity with regard to a solid angle. The quanti-
zation error depends on the resolution of the disparity map computed by a stereo algorithm and
proportional to the solid angles for all types of projections.

Figure 4.18(c) illustrates the dimensions of quantization error intervals and Figure 4.18(d) the
cumulated error combining the quantization and calibration error interval. Additionally, Fig-
ure 4.18 displays a correlation between the distances to 3D points (as seen by the camera) and
the sizes of the calibration and quantization error intervals. Following Eq. 4.62 in Section 4.6.2,
the calibration error intervals increase with decreasing disparities and vice versa. In particular,
distance error intervals increase for points with large distances to the camera. Similarly to the
calibration error intervals, the quantization error intervals increase for decreasing disparities
following Eq. 4.59, Section 4.6.1.

4.7.1 Accuracy and resolution of the projections

The cylindric projection is commonly used in robotics to transform original images into
panoramic images and to generate depth information from stereo setups with omnidirectional
cameras. Therefore, the geometry of the imaging device is adjusted to the properties of the
cylindric projection for obtaining optimal resolutions of panoramic images [166, 167]. For this
reason, an accuracy analysis of 3D data obtained from stereo panoramic vision is done with
regard to cylindric projection in literature only. In this thesis, however, the accuracy of 3D
information is analyzed based on calibration and quantization error intervals for several pairs
of panoramic stereo images. These panoramic images have been obtained from original images
using conical and spherical projections for image transformation. The results are compared
with cylindrical panoramic images.

In a first step, the accuracy of 3D data obtained from pairs of conical, spherical and cylindrical
stereo panoramic images is analyzed. Therefore, an ideal stereo algorithm is presumed that
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Cylindric Projection Conic Projection Spheric Projection
d = 1m dtop = 1m β = 90◦

Ztop = 0, 5658m Ztop = 0, 5658m βoffset = −15, 5◦

Zbottom = −1, 7675m dbottom = −0, 3201m
Zbottom = −0.5658m

Table 4.1: This table illustrates the parameters chosen for image rectification to analyze the
accuracy of 3D information depending on the chosen projection.

establishes correspondences with an accuracy of 1 pixel. Panoramic images that use the same
field of view of the camera for several projections are generated to better compare the results.
Table 4.1 gives an overview of the projection parameters used in this setup for conic, cylindric
and spheric projections. The results presented below are computed for a parallel panoramic
configuration with a baseline length of ∆Z = 5cm. All computed distances d2 for accuracy
analyses are related to the upper camera system as follows:

d2 = sin(ρ) · ∆Z

sin(ϕ)
(4.65)

The results obtained for this configuration can be directly transferred to other omnidirectional
camera-based stereo configurations with baseline lengths ∆Z 6= 5cm. It is shown that the
baseline length ∆Z is directly proportional to the distance d2 (see Eq. 4.65). The elevation
angles ρ and ϕ of scene points Pi as seen by the cameras can be directly obtained from the
image coordinates in panoramic images if the omnidirectional camera is calibrated. Figure 4.19
illustrates the quantization and the calibration error intervals over the distances for cylindrical,
conical and spherical panoramic images using the tested parallel panoramic configuration (see
Table 4.1). For the rest of this chapter, the quantization and calibration error intervals refer to
the distance error intervals for a certain disparity.

4.7.2 Quantization and calibration error

The calibration error is independent of the projection type and can, hence, be used as a reference
for comparing the different quantization error intervals of several projections. The quantization
error intervals should ideally be identical or less than the calibration error intervals for a certain
projection. In other words, the calibration error intervals are suitable as a reference measure for
dimensioning the quantization error intervals in terms of best resolution in pairs of panoramic
stereo images. The resolution of the solid angles and, hence, of panoramic images should be
chosen, so that the resulting dimensions of the quantization error intervals are identical with
those of the calibration error intervals. Increasing the resolution of solid angles in panoramic
images would lead to smaller quantization error intervals but at the same time to a loss of
(texture) information in panoramic images. In a nutshell, the ratio between the calibration and
the quantization error intervals indicates the usability of a chosen projection for a certain stereo
application.
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(a) Testscenario (b) Calibration Error (red cylinders)

(c) Quantization Error (d) Cumulated Error

Figure 4.18: Calibration and quantization error intervals for a simulated parallel panoramic con-
figuration with baseline length ∆Z = 5cm (see [14]).

Figure 4.19, top, illustrates the quantization and calibration error intervals for cylindrical
panoramic images at certain elevation angles −40◦, 0◦ and 20◦. The difference between the
calibration and quantization error intervals at the elevation angle of −40◦ (see Figure 4.19(a))
is larger than the differences at the elevation angles 0◦ and 20◦ (see Figure 4.19(b) and Fig-
ure 4.19(c)). The reason for this is the bad conformity of the cylindric projection to the geometry
of the camera mirror. Moreover, the course of the quantization error intervals strongly differs
for different elevation angles. The conic projection area relates more to the geometry of the
mirror and leads, hence, to a better conformity of the calibration and quantization error intervals
for all elevation angles (see Figure 4.19(d), Figure 4.19(e) and Figure 4.19(f)). This results in
smaller differences between the calibration and quantization error intervals, but the course of
the quantization error interval also differs for certain elevation angles.

The best course of the quantization error intervals can be obtained for spherical panoramic
images at all elevation angles (see Figure 4.19(g), Figure 4.19(h) and Figure 4.19(i)). The ad-
vantage of using spherical panoramic images is in the approximately constant courses of the
quantization error intervals for all elevation angles. This leads to more homogeneous quantiza-
tion error intervals over all disparities for the whole panoramic image and, hence, to an easier
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Figure 4.19: Quantization and calibration error intervals for cylindric (top), conic (middle) and
spheric (bottom) projections for certain elevation angles −40◦, 0◦ and 20◦ [14].

parametrization of panoramic images. Figure 4.20 illustrates a direct comparison of the quanti-
zation error intervals for several projections over the distance to the camera system for the test
angles −40◦, 0◦, 20◦. The quantization error intervals of conical panoramic images best match
the calibration error intervals for all tested angles. For this reason, the conic projection seems
to be the best projection in terms of the resolution of the solid angles in panoramic images and
hence for obtaining 3D information.

Figure 4.21(a) illustrates the ratio of the quantization error intervals over the calibration error
intervals for cylindric, conic and spheric projections for fixed disparity δ = 30 pixels. This
ratio can be used for optimally adjusting the resolution of panoramic images – and, hence, the
resolution of the solid angles – to the calibration error intervals. In other words, the ratio is
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Figure 4.20: Comparison of the calibration and quantization error interval for spheric, conic and
cylindric projections [14].

suitable for designing stereo setups with omnidirectional cameras optimized for obtaining 3D
information with smallest possible distance errors having best resolution in panoramic images
at the same time. For all test angles, the conic projection seems to be the best one for this stereo
configuration due to little variance of the ratio over the elevation angles. Cylindric projection
may also be a good alternative to the conic projection when the elevation angle interval β ∈
[−60◦..5◦] is used only. For both the cylindric and spheric projection, the ratio increases for
elevation angles larger than 10◦.

Figure 4.21(b) illustrates the location of 3D world points computed from disparity maps – for
disparities within the interval δ = [8Pixel..40Pixel] – obtained from cylindric, conic and
spheric panoramic images. This figure also illustrates the different measurement ranges and
blind zones for the presented projections. A blind zone exists in front of the stereo camera sys-
tem in which no distance information can be obtained. The dimensions of blind zones depend
on the disparities and the chosen projections. Increasing the disparity range would reduce the
blind zones but would also lead to higher computation times for disparity maps. In this setup,
only obstacles with a distance of at least 50cm have to be detected so that the chosen disparity
range is sufficient.

4.7.3 Disparity maps

In this section, the disparity maps, which are computed by the semi-global matching stereo
algorithm, and the results of ambiance modeling are presented and discussed. Four test sce-
narios have been chosen for evaluation, three of them existing in real parking situations. The
first scenario presents a parking scenario where a car is parked close to a wall. This scenario is
called the Wall scenario and can occur when parking in a parking garage next to a wall. Fig-
ure 4.22(a) illustrates a panoramic image captured from this scenario. The second scenario is
similar to the first parking scenario but contains more complex scene content with discontinu-
ities and less textured objects such as fire extinguisher and tables. This scenario is called the
WallTable scenario and is illustrated in Figure 4.22(b). The third scenario simulates a parking
scenario close to plants (see Figure 4.22(c) and is called the Plant scenario. For all scenarios,
the obstacles have a distance of at least 50cm to the car door and, hence, to the camera system.
This is a prerequisite for successfully opening car doors to enable safe ingress/egress. A fourth
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Figure 4.21: Ratio of calibration and quantization error intervals for all cylindric, conic and
spheric projection [14].

(a) Scenario Wall (b) Scenario WallTable

(c) Scenario Plant (d) Scenario Table

Figure 4.22: The four test scenarios Wall (a), WallTable (b), Plant (c) and Table (d) used for
stereo evaluation. The scenarios Wall, WallTable and Plant can be understood as
real-life parking scenarios, scenario Table serving as benchmark.

test scenario – called Table – contains objects located close to the camera system. Moreover,
this scenario contains well-textured objects and serves as a reference scenario to evaluate the
generated disparity maps and bounding boxes of the other scenarios. Figure 4.23 illustrates the
obtained disparity maps for the four test scenarios using the semi-global matching algorithm
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and different penalties P1, P2 where P1 < P2 (see Section 4.4.3). The penalties P1 and P2

are introduced to distinguish between large discontinuities and small discontinuities caused by
slanted or curved objects. The disparity maps contain very detailed information and fine dis-
parities for small values of the penalties P1 and P2. However, the disparity maps also contain
more gaps and disturbances caused by noise. Increasing the penalties P1 and P2 leads to dis-
parity maps being more robust against outliers or gaps, but fine disparities obtained from small
objects are also suppressed. In other words, high penalties P1 and P2 introduce some kind of
smoothness and are suitable for suppressing noise and disturbances, but they also suppress dis-
parities of fine objects at the same time. In this thesis, one way to overcome this limitation is
to use dynamically adapted penalties. Discontinuities in disparity maps relate to large intensity
differences and cause edges in panoramic images. Therefore, edges are detected in panoramic
images in a first step. The semi-global matching algorithm then decreases the penalties P1, P2

by P2 = P2/10, P1 = P1/10 when detecting edges in order to maintain disparities of small ob-
jects. This way, dynamically adapted penalties maintain disparities of small objects but suppress
noise and close gaps in disparity maps at the same time.

Rank transformation with a block size of 13 × 13 pixels along with a pixel by pixel difference
computation is used to compute the local matching costs. For this reason, the maximum dif-
ference d between two values in a rank transformed image and hence the maximum value for
matching costs C(x, y) is d = Cmax = N2 – in this application d = Cmax = 169. N represents
the size of the transformation window used for rank transformation. Experiments demonstrated
that the penalties should be chosen in such a way that P2 ≈ 1.5 · Cmax and P1 = P2/4 in order
to obtain dense disparity maps. Figure 4.23 illustrates the disparity maps for the test scenar-
ios Table, Wall, WallTable and Plant using different dynamic penalties P1 and P2. It cam be
seen that disparity maps contain many disturbances in low-textured regions such as floor for
small penalties. These disturbances are successfully removed by using larger penalties whereas
disparities of fine structures are maintained.

In further experiments, the disparity maps obtained from the semi-global matching stereo al-
gorithm [136] are compared to the disparity maps obtained from a stereo algorithm based on
dynamic programming. Georg Passig [144] provides a toolbox used for computing disparity
maps based on dynamic programming. Figure 4.24 illustrates the comparison results for the
four test scenarios. Streaking effects are the limitation of stereo algorithms based on dynamic
programming due to their optimization of disparities in a certain direction by incorporating
constraints for unambiguous matching. In particular, the streaking effects occur in low-textured
regions such as floor regions for all scenarios. Semi-global-matching overcomes the streaking
artifacts by global optimizing path costs for all directions equally. However, disparities obtained
for regions from less-textured objects such as table legs or the elevator frame benefit from the
streaking effects that fill gaps in disparity maps.

4.7.4 Ambiance reconstruction
Once disparity maps are obtained, bounding boxes are generated to represent the geometric
properties of the environment close to the car door. Figure 4.25 shows 3D point clouds (bound-
ing boxes) computed from the disparity maps for the scenarios Table, Wall, WallTable and Plant.
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Figure 4.23: Disparity maps computed for the for test scenarios with the penalties P1 =
20, P2 = 80 (left), P1 = 40, P2 = 160 (middle) and P1 = 65, P2 = 260
(right).

The origin of the omnidirectional camera is specified as the reference coordinate system (world
coordinate system). Bounding boxes obtained from objects located close to the camera system
can be precisely determined and match the surfaces of objects very well. Figure 4.25(a) illus-
trates the bounding boxes obtained for the scenario Table. Due to well-textured objects located
close to the camera system, there are fewer outliers and inaccuracies in the 3D data.
Figure 4.25(b) also demonstrates a good approximation of the wall for the test scenario Wall.
Additionally, bounding boxes are generated for modeling the geometric structure of the scenar-
ios WallTable and Plant. In these scenarios, the disparity maps contain many wrongly deter-
mined disparities caused by poorly textured objects such as table legs or floor regions.

Figure 4.25(c) shows a good representation of the front wall in scenario WallTable with bound-
ing boxes. However, there are vast gaps in the bounding boxes representing the rear wall caused
by missing texture or inaccurate disparities. Figure 4.25(d) shows bounding boxes obtained for
the fourth scenario Plant. The camera was located close to the leaves of the plant to obtain good
correspondences in panoramic images. Additionally, well-textured regions can be found in the
left background and on the floor. However, the floor or the elevator cannot be precisely modeled
by bounding boxes due to missing texture and noise (see Figure 4.25(d)).
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Figure 4.24: Dynamic programming (left) vs. semi-global matching (right). Streaking effects
occur in low-textured regions such as the floor regions for all scenarios. Semi-
global matching overcomes the streaking effects by optimizing path costs in all
directions equally.

Ground-truth data

Further experiments were conducted to compare the location of bounding boxes obtained from
the disparity maps and triangulation with ground truth data. The scenarios Wall and WallTable
were chosen as test scenarios, since they are similar to potential parking situations. The first
scenario represents a parking scenario where a car is parked close to a wall (see Figure 4.26(a)).
A more complex environment was chosen for the second parking scenario (see Figure 4.26(b))
where a car is parked close to a wall and other objects. Ground truth data for both scenarios were
generated in order to evaluate the accuracy of the position of the bounding boxes. Figure 4.26(c)
and Figure 4.26(d) illustrate ground truth data for the parking scenarios. Bounding boxes are
generated along arbitrary scanlines and are compared with the corresponding ground truth data.
Figure 4.26(a) and Figure 4.26(b) show three arbitrary scanlines for the parking scenarios. The
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(a) Scenario Table (b) Scenario Wall

(c) Scenario WallTable (d) Scenario Plant

Figure 4.25: Scenario and resulting bounding boxes for the scenarios Table (a), Wall (b),
WallTable (c) and Plant (d).

scanlines represent a 2D cut through the real scenario and also a cut through the computed
bounding boxes. For all scenarios, the origin of the world coordinate system is located in the
center of the omnidirectional camera system at (0, 0, 0) and the camera is placed at the lowest
position of the camera platform.

Figure 4.27 illustrates the locations of bounding boxes computed for the scenarios Wall and
WallTable. The locations of the bounding boxes matches the ground truth data for scanline
one and scanline two in the first scenario (see Figure 4.27(a) and Figure 4.27(b)). The position
error of bounding boxes increases at scanlines in the lower regions of panoramic images. These
regions are noisy and less textured than the upper regions so that wrong disparities and wrong
3D locations of bounding boxes are determined. Figure 4.27(c) displays bounding boxes that
are computed for the third scanline in scenario Wall. For the second scenario, Figure 4.27(d)
and Figure 4.27(e) illustrate the locations of bounding boxes for scanline 1 and scanline 2. It
can be seen that the bounding boxes are obtained for disparities found at the top of the front
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(a) Scenario 1 and scanlines (b) Scenario 2 and scanlines

−1200 −800 −400 0 400 800 1200
0

100
200
300
400
500
600
700
800
900

1000

C
oo

rd
in

at
e 

Y
 [m

m
]

Coordinate X [mm]

 

 

Gnd. Truth
ODVS

Wall

(c) Ground Truth

−1200 −800 −400 0 400 800 1200
0

200

400

600

800

1000

1200

1400

1600

1800

C
oo

rd
in

at
e 

Y
 [m

m
]

Coordinate X [mm]

 

 

Gnd. Truth
ODVS

Fire
extinguisherWall

Wall

Edge of
the table

(d) Ground Truth

Figure 4.26: Scenario Wall (a) and scenario WallTable (b) and the chosen scanlines used to
compare the bounding boxes with ground truth data of the environment (c,d).

table leg, for the fire extinguisher and for the rear wall (see Figure 4.27(d)). The bounding
boxes generated for scanline 2 model the surface of the table and the front wall and match the
ground truth data (see Figure 4.27(e)) very well. Figure 4.27(f) illustrates the bounding boxes
obtained from the third scanline. The locations of the boxes are computed and model the front
wall. A direct comparison with the ground truth data shows a position error up to 10 cm for the
bounding boxes obtained from disparities in lower image regions.

Bounding box refinement

In Section 4.5.3, a method has been proposed to refine the bounding boxes of objects whose
surface is perpendicular to the ground. Therefore, 3D information is determined from the edge
appearing in an image when an object is in contact with the floor. Figure 4.28(a) and Fig-
ure 4.28(d) show the detected edges (solid line) for scenario Wall and scenario WallTable within
a specified region (dashed line). The refinement stage uses this information to remove outliers
and inaccuracies in the generated bounding boxes. Figure 4.28 illustrates the bounding boxes
for the scenarios Wall and WallTable. These boxes are generated by means of the stereo algo-
rithm and contain many outliers and noise. The refinement stage can be used for improving the
bounding boxes by removing outliers and noise. Figure 4.28(c) and Figure 4.28(f) illustrate the
result after the refinement stage.
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(a) Scen. 1, Scanline 1
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(b) Scen. 1, Scanline 2
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(c) Scen. 1, Scanline 3
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(d) Scen. 2, Scanline 1
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(e) Scen. 2, Scanline 2
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Figure 4.27: Bounding boxes obtained at the scanlines for the scenarios Wall and WallTable and
compared with ground the truth data.

Scenario No Refinement Refinement
Wall 45± 31mm 21± 11mm

Wall Table 157± 47mm 78± 29mm
Table 4.2: Refinement result

It can be seen, that the refinement stage leads to good scene approximations for the scenario
Wall. However, the refinement stage only improves the bounding boxes of objects that touch
the floor and that are perpendicular to the ground. This is guaranteed by restricting the search
area (x ± ∆, y ± ∆) around objects suitable for the refinement stage (see Section 4.5.3). The
bounding boxes of the front wall in scenario WallTable are suitable for refinement only, whereas
all other bounding boxes remain unchanged – i.e. the bounding boxes of the table and the fire
extinguisher (see Figure 4.28(f)).

Further experiments have been conducted to compare the accuracy of improved bounding boxes
with the accuracy of unchanged bounding boxes. The scenarios Wall and WallTable were chosen
as benchmarks and the results obtained were compared to ground truth data. Table 4.2 illustrates
the mean position errors and the standard deviations for the benchmark scenarios. It can be
seen that the refinement stage reduces the mean position errors for both the scenarios Wall and
WallTable. However, the refinement stage must not improve bounding boxes that represent the
rear wall, the table and the fire extinguisher. This leads to a higher mean localization error
in scenario WallTable than in scenario Wall across all bounding boxes. However, outliers and
disturbances in the front wall of scenario WallTable are also detected and removed by means of
the refinement stage.
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(a) Egde/floor information (b) Obtained bounding boxes (c) Refined bounding boxes

(d) Egde/floor information (e) Obtained bounding boxes (f) Refined bounding boxes

Figure 4.28: Unchanged and refined bounding boxes of the scenarios Wall and WallTable that
obtained by a stereo algorithm and improved by an additional refinement stage.

Execution time

In a last experiment, the time for execution has been determined for the proposed ambiance
detection algorithm. Figure 4.29 illustrates the execution time for disparity map generation by
means of the semi-global matching stereo algorithm. The disparity map generation process
is subdivided into three stages. In a first step, matching costs based on rank transformation
followed by a pixel by pixel difference computation are determined. Secondly, the path costs
for the semi global matching algorithm are computed. In a last step, the path costs are summed
up to determine the minimum path costs for disparity computation. Figure 4.29(a) illustrates
the execution time for computing rank-based matching costs and for determining path costs
and disparity maps over the numbers of disparities for fixed search windows (size 11 × 11
pixels). It can be seen that the execution time for computing matching costs slowly rises when
increasing the disparity range, but strongly rises when increasing the size of the search windows
for constant disparities δ = 11 (see Figure 4.29(b)). Only changes in the disparity ranges lead
to changes in the execution times for path costs and disparity computation. By contrast, the
execution time for path costs and disparity computation is independent of the window size for
matching cost computation (see Figure 4.29(b)) with regard to constant disparities δ.

Figure 4.29(c) illustrates the total execution time for computing disparity maps over the dispar-
ity range. These execution times are determined by using different block sizes for matching
cost computation. Table 4.3 gives a brief overview of the total execution time for the entire
ambiance reconstruction process.
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(a) Fixed block size 11× 11 pixels
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(b) Fixed disparity δ = 11 pixel
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Figure 4.29: Execution time for the semi-global matching-based stereo algorithm (SGM) for in-
creasing disparities (a) and increasing the size of search windows for matching cost
computation (b). Total execution time for the SGM-based stereo algorithm using
different search windows over increasing disparities (c). Legend: Cost: match-
ing cost computation, Path: path cost computation, Disp: Summed path costs and
disparity computation, BS block size of search windows.

Task Execution Time [ms]
Camera Motion (35mm) 412ms
Pose Refinement, Rectification 227 ms
Disparity Map Generation, BS: 11× 11 pix, Disp.: δ = 19 pix. 1425 ms
Bounding Boxes (2500) 242 ms
Total Time 2306 ms

Table 4.3: This table illustrates the total execution time for reconstructing the ambiance close to
the car door.

Finally, Figure 4.30 shows the bounding boxes (ambiance information) of a test scenario where
a pillar is located next to the car door. The ambiance information is represented by the blue
spherical bounding boxes, whereas ground information is modeled by red bounding boxes. This
figure also illustrates the wire-frame model of the smart car door.

4.8 Conclusion

This chapter presents a new stereo application in the automotive domain for generating 3D
ambiance information in a smart car door. This application will prevent collisions with static
obstacles next to the car door when opening the car door. For this purpose, an omnidirectional
camera is integrated with the side-view mirror of a car and monitors the surroundings in theirs
entirety. 3D ambiance information is obtained by means of a single omnidirectional camera
and a motion-stereo algorithm. While other stereo-based applications such as telepresence re-
quire detailed 3D scene models, a rough modeling of the environment based on bounding boxes
is sufficient for safely performing door operations. The key problem addressed in this chap-
ter is the generation of solid 3D ambiance information from low-textured and low-resolution
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4.8 Conclusion

(a) Test Scenario (b) Generate Ambiance Information

Figure 4.30: Real-life testing scenario (a) and 3D ambiance information obtained from the pro-
posed stereo algorithm (b). Obstacles are represented by the blue bounding boxes,
and the ground is represented by the red bounding boxes.

panoramic images.

First, this chapter introduces the fundamentals of stereo vision using omnidirectional cameras
and presents a parallel panoramic configuration allowing for a correspondence search along 1D
epipolar lines. In contrast to stereo setups with perspective cameras, two epipoles exist in stereo
panoramic images captured by stereo setups with panoramic cameras. For stereo setups with
horizontally arranged cameras, panoramic images do not preserve straight epipolar lines, and
epipolar curves are obtained instead. However, epipolar lines can be obtained when using a
stereo setup with vertically arranged omnidirectional cameras. This setup is called a parallel
panoramic configuration. A mechanical device is attached to the side-view mirror and positions
the camera vertically to generate a vertical stereo configuration. The mechanical device is also
equipped with a position sensor for determining the translation between two camera positions.
Inaccuracies in the positions due to clearances in the mechanical device cannot be detected with
the sensor. Therefore, an egomotion estimation algorithm is described for refining the relation
between two camera poses using image correspondences only. Based on the relation between
two camera poses, this chapter proposes a method for rectifying pairs of panoramic images to
obtain a parallel panoramic configuration.

Many low-textured objects such as white walls or flower boxes exist in typical parking scenar-
ios. For this reason, the stereo algorithm must be suitable for generating disparity maps from
low-textured panoramic images. Therefore, the semi-global matching stereo algorithm is pre-
sented that is suitable for producing dense disparity maps even from pairs of low-textured and
low-resolution panoramic images. Other stereo algorithms, i.e. based on dynamic program-
ming, use strong stereo constraints in one search direction but none or weak constraints in other
search directions. Semi-global matching, however, aggregates matching costs across the whole
panoramic image and considers stereo constraints for all search directions equally. For this rea-
son, the semi-global matching stereo algorithm can compute dense disparity maps even from
poorly textured regions in panoramic images.
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Based on the disparity maps, 3D ambiance information in the form of bounding boxes is gener-
ated using triangulation. But these disparity maps contain inhomogeneities and outliers leading
to wrongly determined positions of the bounding boxes. In particular, low-textured regions and
image noise lead to many wrongly determined disparities and hence to wrongly computed loca-
tions of bounding boxes. These disturbances in the bounding boxes must be removed in order
to increase the robustness of ambiance modeling. For this reason, a refinement stage is intro-
duced in Section 4.5.3 to remove outliers in the bounding boxes. Outliers are detected using
edge/floor information from objects that touch the floor and whose surfaces are perpendicular
to the floor. Experiments demonstrated a good modeling surroundings next to the car door with
a single omnidirectional camera and the motion-stereo algorithm.

Additionally, a new method is proposed to determine the position error of 3D-data depending
on the quantization error (see Section 4.6.1) and the calibration error (see Section 4.6.2) of
omnidirectional cameras. For both the quantization and calibration error, distance error intervals
are computed for analyzing the accuracy of 3D data obtained from omnidirectional camera-
based stereo setups. In literature, the geometry of the imaging device is adapted to the properties
of the cylindric projection in order to obtain best resolution of panoramic images. For this
reason, accuracy analysis of 3D data obtained from panoramic stereo setups is limited to the
cylindric projection. In this thesis, a new study is presented that analyzes the accuracy of 3D
data generated from cylindrical, conical and spherical panoramic images using distance-based
calibration and quantization error intervals (see Section 4.7.1). The ratio between the calibration
and quantization error intervals can be used as a measurement value to evaluate projections in
terms of accuracy and usability of stereo setups. Finally, the measurement ranges and blind
zones are analyzed for cylindrical, conical and spherical panoramic images.
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5 Concluding remarks

In this thesis, a smart car door system has been presented that consists of an actuated two-
hinge kinematic system allowing for situation-dependent door opening in tight parking lots.
The smart car door system also includes a device to adjust the car seat according to the driver’s
body height. Therefore, a sensor subsystem provides ambiance information and body heights
of approaching drivers for the control unit. The sensor system used for this application consists
of two omnidirectional cameras, one attached to each side-view mirror of the car.

This thesis focuses on the sensor subsystem of the smart car door and on algorithms for body
height estimation and ambiance monitoring. First, methods and techniques were presented to
transform original images obtained by omnidirectional cameras into panoramic images. These
methods are also suitable for evaluating panoramic images in terms of applicability for specific
camera/mirror configurations. Additionally, novel methods were proposed to robustly extract
approaching drivers in low-resolution images and to measure their absolute body heights using
a single omnidirectional camera only. Finally, this thesis presented a new application that uses a
motion stereo-based algorithm to generate 3D-information of the surroundings next to the door.
This chapter summarizes the contributions of the thesis and outlines some directions for future
research and future work.

Chapter 2 introduced the geometry of omnidirectional cameras and described the properties
of central projection cameras, viz. omnidirectional cameras with a single point of view. The
single point of view enables the generation of perspective panoramic images from original im-
ages to facilitate the determination of geometric properties of objects in a scene. Moreover,
the single point of view property is a prerequisite for applying the known epipolar geometry to
omnidirectional cameras to generate true 3D information of a scene. This chapter described the
mathematical formalism of the omnidirectional camera model and presented a calibration pro-
cess. A toolbox for calibrating omnidirectional cameras required manually selected chessboard
corners to obtain the intrinsic and extrinsic parameters of omnidirectional cameras. However,
the calibration of (omnidirectional) cameras must be performed automatically in the automotive
domain: Therefore, this thesis presented an extension to the current calibration process to auto-
matically detect chessboard corners in calibration images. The proposed algorithm is suitable
for extracting calibration patterns in low resolution images and was tested with images taken
under different illumination conditions. It is shown through a large number of experiments that
the proposed algorithm is strongly robust against illumination changes and noise.

Additionally, the pixel density was introduced as a measurement value to compare different
camera configurations and to evaluate different projections used for image transformation. The
pixel density indicates the distribution and the utilization of sensor pixels in panoramic images.
The best utilization of sensor pixels is achieved by values of the pixel density close to unity.
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(a) Constant Gain Mirror (b) Resolution Invariant Mirror

Figure 5.1: Images of omnidirectional cameras using optimized mirrors [166].

This means a direct mapping of intensity values of sensor pixels to the corresponding pixel
positions in panoramic images. A pixel density less than unity denotes poor resolution since the
intensity of a sensor pixel is required at several pixel positions. Larger values than unity denote
a waste of sensor pixels since intensities of many sensor pixel positions are projected onto the
same pixel position in the panoramic image. The pixel density and its characteristics can help
to adjust the projection type and the projection parameters to obtain best utilization of sensor
pixels in panoramic images. This chapter also demonstrates that the commonly used cylindric
projection is not the best projection for image transformation due to the large variance of the
values of the pixel density across the projection area.

Future directions: The calibration process described in this chapter requires calibration pat-
terns to determine the extrinsic and intrinsic parameters of the camera. An interesting direction
to explore would be the design of a self calibration algorithm that extracts features such as
lines and corners from the surroundings of the camera to determine the calibration parameters.
Examples of such features include road markings or arbitrary features, e.g. of passing cars.
Additional information such as the mounting position on the car or the speed together with the
epipolar constraint for omnidirectional cameras would lead to precise calibration results. A self
calibration would also overcome costly additional calibration stages in car manufacturing pro-
cesses. First research addressing these issues is presented by Geyer et al. [113] and could be
extended to design a robust self-calibration algorithm to be used in the domain of automotive
system engineering.

In this thesis, a hyperbolic mirror was used for the omnidirectional camera. Hyperbolic mirrors
lead to varying pixel densities over the transformed panoramic images and, hence, to a varying
resolution in panoramic images. Another interesting direction to explore would be the devel-
opment of optimized mirrors to obtain constant pixel densities and constant resolutions across
panoramic images. Such mirrors were proposed in [166] and would lead to a better utilization
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of sensor pixels in panoramic images (see Figure 5.1). The proposed pixel density could be used
for computing optimized mirrors particularly targeting the need for cameras in the automotive
domain. Additionally, correspondence search and distance estimation could be facilitated by
using panoramic images with approximately constant resolutions.

Chapter 3 describes a novel method for estimating the body height of approaching drivers to
automatically adjust the driver seat position. An adjusted seat position increases the comfort for
ingress and egress in tight parking lots. This chapter focuses on robust extraction of approaching
drivers in low-resolution panoramic images and on absolute body height estimation using a
single omnidirectional camera. A Kalman-based background model is presented that separates
foreground objects from background and detects approaching drivers. A background model
is suitable for extracting complete regions even in low-contrast panoramic images. Therefore,
it has been chosen instead of alternative detection methods such as optical flow or template
matching. In particular, drivers that are far away from the car occupy only few pixels on each
video frame and are, thus, not easy to differentiate from the background.

Optical flow is a powerful tool for detecting moving objects, but it cannot detect static objects
such as standing drivers. Moreover, it is difficult to detect approaching drivers in our setup due
to poor contrast and poorly textured regions in low-resolution panoramic images. The use of
optical flow would then lead to incomplete image regions containing the drivers. These regions,
however, must be determined precisely since they serve as input for the height estimation algo-
rithm. Foot and head points of approaching drivers are identified in these regions to estimate
the body heights.

The background algorithm is extended to record background images in parking scenarios with
high traffic volumes. This chapter also presents robust shadow detection especially targeting
shadow elimination in gray-scaled images and compensation of illumination changes. The po-
sition of a camera relative to the ground is the key feature for absolute body height estimation
using a single camera only. This camera position varies for each parking scenario and must be
determined from image data only. Camera position estimation is based on a set of extracted
foot and head points that is recorded from a driver as he/ she approaches. In Chapter 3, a novel,
model-based camera-ground function is proposed that models the relation between the cam-
era and the ground based on image data from extracted head and foot points of approaching
drivers. This function explicitly considers camera tilt caused by inclined parked cars and has a
global minimum when the estimated camera position relative to the ground best matches the real
camera position. With the estimated camera position, the absolute body height of approaching
drivers can be computed from the sets of foot and head points.

Experiments demonstrated a good extraction of approaching drivers in panoramic images even
if they were far away from the car. The proposed shadow detection and illumination com-
pensation algorithm proved to be a powerful extension for the precise extraction of drivers in
low-resolution panoramic images. Further experiments showed a good estimation of the cam-
era position relative to the ground. Moreover, the body height of approaching drivers could be
estimated with an accuracy of up to 3cm to 4cm using several sets of foot and head points.
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Future directions: The proposed algorithm uses foot and head points of approaching drivers
for estimating their body heights. The limitation of this technique is the influence of high-
heeled shoes or large hair styles on the body height estimation. In other words, it is not possible
to extract real foot points of approaching drivers when they wear high-heeled shoes. One way
to overcome this limitation is using an additional anthropometric model that explicitly extracts
and considers body proportions such as the length of legs, arms and torso. Such anthropometric
models are commonly used in the domain of ergonomics and in performance analyses of athletes
in sports and athletics.

Chapter 4 presents a new stereo application with a single omnidirectional camera and for gen-
erating 3D ambiance information of the surroundings next to a car door. The 3D information
serves as input to a control unit that computes opening paths to avoid collisions when opening
the door. In contrast to other applications such as telepresence that require detailed 3D scene
models, a rough model of the surroundings is sufficient to safely open a car door.

This chapter introduces the fundamentals of stereo vision with omnidirectional cameras. In this
application, the omnidirectional cameras are vertically arranged to each other to obtain a par-
allel panoramic configuration. The parallel panoramic configuration enables a correspondence
search along 1D epipolar lines. Therefore, a mechanical device is attached to the side-view
mirror of the car and vertically positions the camera to obtain a stereo setup. The mechani-
cal device is equipped with a position sensor to determine the vertical translation between two
camera positions. Small rotations and additional translations caused by mechanical clearances
cannot be detected with the sensor. Therefore, an egomotion estimation algorithm is described
that refines the relation between two camera poses using image correspondences only. With
the known relation, pairs of panoramic images can be rectified to obtain a parallel panoramic
configuration for facilitating the correspondence search.

The semi-global matching algorithm is presented that is suitable for generating dense disparity
maps from pairs of low-textured and low-resolution panoramic images. Based on these disparity
maps, 3D ambiance information – in form of bounding boxes – is produced using triangulation.
Moreover, a refinement stage is introduced to remove outliers in the 3D data by using edge/floor
information of objects that touch the floor and whose surface is perpendicular to the ground.
Chapter 4 also describes a new method to determine the position error of 3D-data. This position
error depends on the calibration error of omnidirectional cameras and on the quantization error
incurred by the resolution of panoramic images. In a further study, the measurement ranges
and blind zones of stereo setups with omnidirectional cameras are analyzed. The measurement
ranges and blind zones depend on the baseline length and on the projection in panoramic images.
Further experiments demonstrated a good modeling of the surroundings next to the car door with
an omnidirectional camera-based stereo setup.

Future directions: Stereo setups providing a parallel panoramic configuration have very large
dimensions due to large packages of today’s omnidirectional cameras and are, hence, not easy
to integrate into vehicles. A new design of omnidirectional cameras – such as folded omnidirec-
tional cameras – would reduce the dimension of the camera packages and lead to smaller stereo
setups and would also fulfill the needs of automotive system design. Figure 5.2(a) displays a
folded omnidirectional camera [168] that could be used as an alternative to standard omnidirec-
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(a) Folded ODVS (b) Mirror and Lens (c) Example Image

Figure 5.2: Folded omnidirectional camera [168] (a). Stereo configuration with a single omni-
directional camera and a lens (b) and the resulting stereo image [169] (c).

tional cameras. In this device, the perspective camera is integrated within the hyperbolic mirror.
An extra mirror reflects the light from the hyperbolic mirror into the perspective camera.

In this thesis, a mechanical device has been attached to the side-view mirror to vertically po-
sition the camera. In this manner, a stereo setup based on motion stereo has been obtained.
When the camera is integrated with the side-view mirror of a car, the required camera motion
could be provided by a fold-in and fold-out movement of the side-view mirror to obtain a stereo
setup. Moreover, several images could be captured during the fold-in and fold-out movement
of the mirror in order to obtain a multi-baseline stereo system. The relation between a reference
image and the other images captured, which are captured at different poses, could be estimated
from image data and from known motion paths. Another interesting direction to explore would
be the use of stereo systems with single omnidirectional cameras. Yi et al. [169] proposed
an omnidirectional camera that is equipped with an extra lens to obtain two views of a sce-
nario. Figure 5.2(b) shows the proposed camera system and Figure 5.2(c) illustrates a stereo
image captured by this camera. This camera system was not suitable for this application due to
its very poor resolution, but the increasing resolution of common camera sensors makes such
system more and more attractive for stereo applications in the automotive domain.
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