User: Guest  Login
Document type:
journal article 
Schulte, Eva C; Fukumori, Akio; Mollenhauer, Brit; Hor, Hyun; Arzberger, Thomas; Perneczky, Robert; Kurz, Alexander; Diehl-Schmid, Janine; Hüll, Michael; Lichtner, Peter; Eckstein, Gertrud; Zimprich, Alexander; Haubenberger, Dietrich; Pirker, Walter; Brücke, Thomas; Bereznai, Benjamin; Molnar, Maria J; Lorenzo-Betancor, Oswaldo; Pastor, Pau; Peters, Annette; Gieger, Christian; Estivill, Xavier; Meitinger, Thomas; Kretzschmar, Hans A; Trenkwalder, Claudia; Haass, Christian; Winkelmann, Juliane 
Rare variants in ?-Amyloid precursor protein (APP) and Parkinson's disease. 
Many individuals with Parkinson's disease (PD) develop cognitive deficits, and a phenotypic and molecular overlap between neurodegenerative diseases exists. We investigated the contribution of rare variants in seven genes of known relevance to dementias (?-amyloid precursor protein (APP), PSEN1/2, MAPT (microtubule-associated protein tau), fused in sarcoma (FUS), granulin (GRN) and TAR DNA-binding protein 43 (TDP-43)) to PD and PD plus dementia (PD+D) in a discovery sample of 376 individuals with PD and followed by the genotyping of 25 out of the 27 identified variants with a minor allele frequency<5% in 975 individuals with PD, 93 cases with Lewy body disease on neuropathological examination, 613 individuals with Alzheimer's disease (AD), 182 cases with frontotemporal dementia and 1014 general population controls. Variants identified in APP were functionally followed up by A? mass spectrometry in transiently transfected HEK293 cells. PD+D cases harbored more rare variants across all the seven genes than PD individuals without dementia, and rare variants in APP were more common in PD cases overall than in either the AD cases or controls. When additional controls from publically available databases were added, one rare variant in APP (c.1795G>A(p.(E599K))) was significantly associated with the PD phenotype but was not found in either the PD cases or controls of an independent replication sample. One of the identified rare variants (c.2125G>A (p.(G709S))) shifted the A? spectrum from A?40 to A?39 and A?37. Although the precise mechanism remains to be elucidated, our data suggest a possible role for APP in modifying the PD phenotype as well as a general contribution of genetic factors to the development of dementia in individuals with PD. 
Journal title abbreviation:
Eur J Hum Genet 
Journal volume:
Journal issue:
Pages contribution:
Fulltext / DOI:
TUM Institution:
Neurologische Klinik und Poliklinik; Klinik und Poliklinik für Psychiatrie und Psychotherapie; Institut für Humangenetik; Lehrstuhl für Neurogenetik