Benutzer: Gast  Login
Originaltitel:
Preclinical PET as Translational Tool for Imaging Alzheimer's Disease 
Originaluntertitel:
Small-Animal PET Imaging of Beta-Amyloid Plaques with [11C]PiB, its Multi-Modal Validation and Application to the Evaluation and Ranking of New AD Tracers 
Übersetzter Titel:
Präklinische PET als Translatorisches Werkzeug zur Alzheimer Bildgebung 
Übersetzter Untertitel:
Kleintier-PET Bildgebung von Beta-Amyloid Plaques mit [11C]PiB, ihre Multi-Modale Validierung und ihre Anwendung auf die Evaluation und Einordnung Neuer Alzheimer Tracer 
Jahr:
2012 
Dokumenttyp:
Dissertation 
Institution:
Fakultät für Medizin 
Betreuer:
Schwaiger, Markus (Prof. Dr.) 
Gutachter:
Schwaiger, Markus (Prof. Dr.); Förstl, Johann (Prof. Dr.) 
Sprache:
en 
Fachgebiet:
MED Medizin 
Stichworte:
Alzheimer's disease, neurodegeneration, amyloid-beta plaque, small-animal PET, tracer, PiB, BTA, IBT, IMPY, transgenic mouse, homozygous, APP/PS1, autoradiography, biodistribution, ELISA, histological plaque quantification 
Übersetzte Stichworte:
Alzheimer'sche Krankheit, Neurodegeneration, Amyloid-beta Plaque, Kleintier-PET, Tracer, PiB, BTA, IBT, IMPY, transgene Maus, homozygot, APP/PS1, Autoradiographie, Biodistribution, ELISA, Histologische Plaque Quantifizierung 
Kurzfassung:
Alzheimer's disease (AD) causes unprecedented ethical, social and economical implications. The disease concept remains unclear and, hence, comprehensible therapeutic targets do not exist. This requires new and reliable approaches to investigate the disease concept further and to create hard evidence on postulated phenomena. Excessive production of amyloid-β (Aβ) via proteolysis of the amyloid precursor protein (APP) and the subsequent oligomerization and aggregation to Aβ plaques in the brain are considered to be initial pathological events and a major early and causal hallmark of AD. Therefore, non-invasive and quantitative Aβ imaging with positron emission tomography (PET) in humans is by now considered a helpful technique in this quest. Preclinical Aβ imaging in rodent disease models has been limited to very few studies and is still challenging. Recent improvements of small animal PET (μPET) performance have facilitated in vivo imaging of rats and mice and together with the abundance of available transgenic mouse (Tg) models of AD, should provide a valuable method for translational research such as developing specific imaging markers and monitoring new therapeutic approaches. However, intrinsic methodological constraints such as image resolution of PET and applicability of available research models have so far limited the feasibility of PET imaging in transgenic mouse models of AD. The development and evaluation of a feasible protocol for small-animal PET imaging of Aβ plaques in mouse brain is presented as a first major contribution of this thesis. For this, the established 'gold-reference' radiotracer [11C]PiB was used with specific activities commonly used in human studies. In vivo mouse brain MR images for anatomical reference were acquired with a clinical 1.5 T system. An initially unpublished, homozygous APP/PS1 transgenic mouse line (ARTE10) with low inter-animal variability was characterized for its potential applicability to in vivo imaging and employed to measure Aβ burden at different disease stages in homozygous and hemizygous animals. Extensive multi-modal cross-validations for the PET results in this mouse model with ex vivo and in vitro methodologies, including regional brain biodistribution, dual-label digital autoradiography, protein quantification with ELISA, fluorescence microscopy and semi-automated histological quantification are described as a second major contribution. This includes an additional all-in-one experimental design as a toolbox for translational applications. Application of the established combined methodology to the evaluation and ranking of two novel lead compounds for AD imaging, as examples, 2-(p-[11C]Methylaminophenyl)-7-methoxyimidazo[2,1-b]benzothiazole ([11C]IBT) and 2-(4'-bromophenyl)-6-iodoimidazo[1,2-a]pyridine ([124I]BrIMPY), is shown as a third major contribution. Specific in vivo [ 11C]PiB uptake in individual brain regions with Aβ plaque deposition was demonstrated and validated in all animals of a large study cohort including homozygous AD animals as young as nine months. Corresponding to the extent of Aβ plaque pathology, old homozygous AD animals (21 months) showed the highest uptake followed by old hemizygous (23 months) and young homozygous mice (9 months). In all AD age groups the cerebellum was shown to be suitable as an intracerebral reference region. PET results were cross-validated and consistent with all applied ex vivo and in vitro methodologies. This also verified the validity and applicability of the animal model for PET imaging. The reliability and validity of the all-in-one design was verified. Specific in vivo uptake of ([11C]IBT and ([124I]BrIMPY in Aβ-containing telencephalic brain regions with comparable ex vivo binding patterns to PiB and excellent correlation with Aβ plaque pathology was shown by applying the combined experimental concept. The results confirm that the experimental setup for non-invasive ([11C]PiB imaging of Aβ plaques in a novel APP/PS1 mouse model of AD provides a feasible, reproducible and robust protocol for small-animal Aβ plaque imaging. The experimental framework with this model allows for longitudinal imaging studies with follow-up periods of approximately one and a half years. The representative and successful evaluation of new PET and SPECT imaging agents with high sensitivities for in vivo Aβ detection confirm that the developed experimental design provides a toolbox for AD research in transgenic mice and, hence, the foundation for translational Alzheimer neuroimaging. 
Übersetzte Kurzfassung:
Die Alzheimer´sche Krankheit (Alzheimer's disease, AD) bringt beispiellose ethische, gesellschaftliche und wirtschaftliche Auswirkungen mit sich. Das Verständnis der Erkrankung ist weiterhin im Unklaren, weshalb nachvollziehbare therapeutische Angriffspunkte weitgehend fehlen. Dies erfordert neue und verlässliche Ansätze zur weiteren Untersuchung verschiedener Hypothesen und zur Untermauerung von bestehenden Postulaten der Krankheit. Die überschüssige Produktion von Amyloid-β (Aβ) durch Abspaltung aus dem Amyloid Precursor Protein (APP) sowie die nachfolgende Oligomerisierung und Aggregation hin zu Aβ Plaques im Gehirn werden als anfängliche pathologische Ereignisse und als eine der frühen und ursächlichen Kennzeichen der AD angesehen. Aus diesem Grund betrachtet man mittlerweile die nicht-invasive und quantitative Aβ Bildgebung im Menschen, unter Verwendung der Positronen-Emissions-Tomografie (PET), als hilfreiche Technik auf der Suche nach den Ursachen. Allerdings ist die präklinische Aβ Bildgebung in Nagetiermodellen bisher auf sehr wenige Studien beschränkt und weiterhin mit großen Herausforderungen verbunden. Jüngste Verbesserungen in der Leistungsfähigkeit von Kleintier-PET Geräten (µPET) ermöglichen die in vivo Bildgebung in Ratten und Mäusen. Im Zusammenspiel mit der Fülle verfügbarer transgener (Tg) Mausmodelle für die AD sollte µPET eine wertvolle Methode für translatorische Forschung sein, zum Beispiel zur Entwicklung spezifischer bildgebender Substanzen oder der Verfolgung neuer Therapieansätze. Intrinsische methodische Beschränkungen, wie zum Beispiel die Bildauflösung der PET und die Anwendbarkeit vorhandener Tiermodelle, haben bisher jedoch die Brauchbarkeit der PET Bildgebung in transgenen Mausmodellen der AD begrenzt. Die Etablierung und Evaluation eines praktikablen Protokolls zur Kleintier-PET Bildgebung von Aβ Plaques im Maushirn wird als der erste große Beitrag dieser Dissertation dargestellt. Hierfür wurde der etablierte "Goldstandard" Tracer [11C]PiB mit spezifischen Aktivitäten, wie sie in menschlichen Studien üblich sind, angewendet. Zur anatomischen Orientierung wurden in vivo Magnetresonanz (MR) Bilder des Maushirns mit einem klinischen 1.5 T Kernspintomographen aufgenommen. Eine zunächst unveröffentlichte, homozygote transgene APP/PS1 Mauslinie (ARTE10), deren Phänotyp geringe Schwankungen zwischen den einzelnen Tieren aufweist, wurde für ihre mögliche Anwendbarkeit in der in vivo Bildgebung charakterisiert. Daraufhin wurden die Tiere verwendet, um den Aβ Gehalt in unterschiedlichen Erkrankungsstadien in homozygoten und hemizygoten Tieren zu messen. Die umfangreiche multi-modale Kreuzvalidierung der PET-Ergebnisse in diesem Mausmodell, unter Verwendung von ex vivo und in vitro Methoden, wird als zweiter großer Beitrag dieser Arbeit beschrieben. Zu den angewendeten Validierungsmethoden zählen regionale Hirnbiodistribution des Tracers, digitale Autoradiographie mit zwei Isotopen, Bestimmung des Aβ-Gehalts mittels ELISA, Fluoreszenzmikroskopie und eine semi-automatisierte histologische Quantifizierung. Diese Validierungsexperimente schließen einen zusätzlichen, kombinierten Experimentaufbau als eine Art „Werkzeugkasten“ für translatorische Anwendungen ein. Die Anwendung dieser kombinierten Methodik auf die Evaluation und Einordnung neuer Ausgangsverbindungen zur Bildgebung der AD wird als dritter großer Beitrag dieser Arbeit präsentiert. Als Beispiele zur Anwendung des „Werkzeugkastens“ werden 2-(p-[11C]Methylaminophenyl)-7-methoxyimidazo[2,1-b]benzothiazol ([11C]IBT) und 2-(4'-bromophenyl)-6-iodoimidazo[1,2-a]pyridin ([124I]BrIMPY) verwendet. Als Ergebnis der Arbeit konnten die spezifische in vivo Aufnahme von [11C]PiB in verschiedenen Hirnregionen mit Aβ Pathologie gezeigt werden. Dies wurde in allen Tieren einer großen Studienkohorte validiert, welche homozygote AD-Modelltiere mit einem Alter von neun Monaten, einschloss. Entsprechend dem Ausmaß ihrer Aβ Plaque Pathologie, zeigten alte homozygote Tiere (21 Monate alt) die höchste Traceraufnahme, gefolgt von hemizygoten (23 Monate alt) und jungen homozygoten Mäusen (9 Monate alt). In allen Altersgruppen der AD-Modelle konnte gezeigt werden, dass das Kleinhirn als intrazerebrale Referenzregion sehr gut geeignet ist. Die PET-Ergebnisse wurden kreuzvalidiert und stimmten mit allen angewendeten ex vivo und in vitro Methoden überein. Zusätzlich wurde damit auch die Validität und Anwendbarkeit des Tiermodells für die PET-Bildgebung nachgewiesen sowie die Verlässlichkeit und Gültigkeit des kombinierten Experimentkonzepts bestätigt. Schließlich konnte mithilfe dieser kombinierten Experimente die spezifische in vivo Aufnahme der neuen Tracer [11C]IBT und [124I]BrIMPY in telenzephalen Hirnregionen mit hohem Aβ-Gehalt gezeigt und die mit PiB vergleichbaren ex vivo Bindungsmuster und exzellenten Übereinstimmungen mit der Aβ Plaque Pathologie demonstriert werden. Die Ergebnisse bestätigen, dass der experimentelle Aufbau für die nicht-invasive [11C]PiB Bildgebung von Aβ Plaques in einem neuen APP/PS1 Mausmodell der AD ein praktikables, reproduzierbares und stabiles Protokoll zur Aβ Plaque Bildgebung im Kleintier erbringt. Aufgrund des geringen Alters der verwendeten homozygoten Tiere erlaubt das Versuchssystem unter Verwendung dieses Modells longitudinale Bildgebungsstudien über einen Zeitraum von ungefähr eineinhalb Jahren. Die repräsentative und erfolgreiche Evaluation neuer PET und SPECT Verbindungen, die eine hohe Empfindlichkeit für den in vivo Nachweis von Aβ hatten, bestätigte, dass das entwickelte Experimentdesign eine Art „Werkzeugkasten“ zur Erforschung der AD in transgenen Mäusen liefert und so eine Grundlage für die translatorische Bildgebung der Alzheimer´schen Krankheit schafft. 
Mündliche Prüfung:
27.03.2012 
Dateigröße:
30179265 bytes 
Seiten:
214 
Letzte Änderung:
25.02.2014